Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этил, энергия образования

    К особому случаю электростатических сил направленного действия относится водородная связь [3]. Она возникает между двумя партнерами, один из которых содержит атом водорода, присоединенный к электроотрицательному атому, а другой— свободную пару электронов X—Н---У (здесь X — атом с высокой электроотрицательностью, т. е. Р, О, Ы Н — атом водорода, У—атом с неподеленной парой электронов, Н---У — водородная связь). Чем сильнее электроотрицательность X, тем более положителен водород в связи X—Н. При этом кислород имеет в газовой хроматографии наибольшее значение для высших аналогов этих трех элементов энергии водородных связей имеют тот же порядок, что и обычные силы притяжения [4]. В соединениях с гидроксильной группой атом водорода приобретает положительный заряд благодаря перемещению электронов к электроотрицательному атому кислорода (например, в карбоновых кислотах, спиртах, фенолах, воде) и смещается к атомам, обладающим неподеленной парой электронов, т. е. к атомам фтора, кислорода, азота (во фторсодержащих соединениях, простых и сложных эфирах, кетонах, альдегидах, карбоновых кислотах, спиртах, фенолах, аминах и т. п.). Сходным образом ведет себя атом водорода в ЫН- и СН-группах, если азот (например, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, органических нитро- и цианистых соединениях с а-атомами водорода) становятся отрицательными благодаря особенностям химической структуры соединения. Энергия образования водородной связи примерно на порядок больше, чем энергия обычного межмолекулярного взаимодействия, однако она гораздо меньше энергии образования химической связи. Вследствие этого энергию образования водородной связи можно объяснить не только электростатическим взаимодействием ХН и V. Второе взаимодействие можно приписать [c.71]


    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Наконец, из табл. 4 видно, что энергии образования метил- и этил-ионов из олефииов намного выше, чем энергия образования вторичных (и третичных) форм высших ионов. Таким образом, энергетически легко объяснимо правило незначительного образования нри каталитическом крекинге ионных осколков, имеющих меньше 3 атомов углерода. Общее правило о предпочтительном образовании осколков от Сд и больше при каталитическом крекинге основано на отдельных правилах, применимых отдельно к образованию как олефиновых, так и ионных осколков при крекинге иона карбония. [c.126]

    Во всех этих случаях переход от одной гомогенной фазы к другой протекает через промежуточное состояние, отвечающее микрогетерогенной системе, в которой зародыши новой фазы распределены внутри исходной фазы. Это промежуточное состояние вследствие множества границ раздела обладает повышенным запасом энергии, и ее создание требует энергии активации, определяемой энергией образования трехмерных зародышей. [c.329]

    В настоящее время из трех приведенных значений при наличии термодинамических данных используется АН. Если ЛЯ отрицательно, то при реакции выделяется тепло и при этом энергия образования имеет положительное значение. [c.70]


    Упражнение 111,20. Считая газы идеальными, найдите равновесную концентрацию СО2 в реакции 2С0 — СО — С =0 при 1000° К и атмосферном давлении. Свободные энергии образования СО, Oj и С прп этой температуре равны соответственно —76 062, —138 078 и —2771 кал/моль. Покажите также, что если X — равновесная мольная доля Oj, то величина (1 — х)/х пропорциональна давлению. [c.59]

    Энергия кристаллической решетки — это энергия образования кристалла из невзаимодействующих между собой структурных элементов. Найдем эту величину вначале для статической решетки кристалла, затем учтем энергию теплового движения атомов. Действующее на каждый из атомов силовое поле зависит от потенциала ф(г) и от симметрии кристаллической решетки. Это поле будет различным для атомов, занимающих различающиеся базисные узлы кристаллической решетки. Основываясь на потенциале (1), энергию взаимодействия -того атома с окружающими его атомами, когда все они находятся в узлах кристаллической решетки, можно записать в виде [c.83]

    Подход, аналогичный изложенному выше, пригоден и для ассоциации заряженных атомных дефектов в полярных твердых телах (соединениях). Однако существует и различие. В кристаллах простых тел необходимо учитывать только электронную поляризацию. Вследствие этого энергия образования ассоциата дается законом Кулона [c.208]

    До начала применения статистических методов точные термодинамические величины углеводородов были определены в основном при комнатной температуре. Теплота образования была получена использованием данных о теплоте сгорания и энтропиях, которые рассчитываются интегрированием экспериментальных теплоемкостей. Свободные энергии образования затем были рассчитаны по теплоте образования и изменению энтропии. Эти величины, отнесенные обычно к температуре 298° К, сведены в таблицы. [c.372]

    В табл.7.1 приведены данные по свободной энергии образования некоторых углеводородов при различных температурах и стандартном давлении (101325 Па). Видно, что значение А2 для всех углеводородов зависит от молекулярной структуры и существенно возрастает с ростом Их молекулярной массы и повышением температуры (кроме ацетилена). Из этих данных следует вывод о том, что высокомолекулярные углеводороды, обладающие, по сравнению с низкомолекулярными, большим запасом энергии образования А2д,, термически менее стабильны и более склонны к реакциям распада, особенно при высоких температурах термолиза. [c.10]

    Одной из основных идей современной физики и химии является понятие о квантованных состояниях нли квантованных энергетических уровнях. Большое значение этих представлений для химии обусловлено тем, что все равновесные свойства газов могут быть вычислены на основании данных об энергетических уровнях их молекул. К этим свойствам относятся термодинамические величины теплоемкости, энтропии, свободные энергии образования и константы равновесия химических реакций. Во многих случаях величины, вычисленные таким образом, точнее, чем найденные экспериментально в других случаях вычисления являются единственно доступным в настоящее время методом получения необходимых данных, так как проведение соответствующих экспериментальных измерений практически невозможно. [c.292]

    Реакция эта экзотермическая, свободная энергия образования кумола определяется формулами  [c.497]

    Таким образом, на этом примере показано, что применение стандартных свободных энергий образования соединений из элементов позволяет производить расчеты для всех реакций, если известны Л 2° реагентов. [c.101]

    В 1945—1946 гг. были опубликованы новые сведения о свободных энергиях образования олефинов и парафинов из элементов, расчитанные по спектроскопическим данным. Поэтому мы сочли уместным сравнить эксперимент с расчетом. Для этой цели были использованы данные о свободных энергиях образования олефинов п парафинов из элементов (см. статьи Вагман, Кильпатрик, Тайлор, Питцер, Россини [21] и Прозен, Питцер, Россини [33]). [c.264]

    В расчетах методом суммирования широко используются термодинамические характеристики реакций образования веществ. Свободная энергия образования вещества в стандартных условиях, АРf, представляет собой изменение свободной энергии, происходящее при образовании этого вещества в его обычном состоянии (твердое тело, жидкость или газ) из составляющих элементов, находящихся в стандартном состоянии. За стандартное состояние элемента обычно принимается его наиболее стабильная форма при комнатной температуре. Стандартное состояние углерода — графит, водорода или кислорода — двухатомные газы. Изменение свободной энергии в стандартных условиях можно легко рассчитать, складывая стандартные свободные энергии образования индивидуальных компонентов реакции. Так, например, АР° для сгорания бутадиена (первая реакция в (УП-4) рассчитывается по выражению [c.361]


    Ацетилен термодинамически неустойчив в широком интервале температур (до 3923 °С). Интересно, что величина свободной энергии образования ацетилена имеет положительные значения до 3923 °С и уменьшается с увеличением температуры, в то время как- для многих других углеводородов характер этой зависимости обратный (рис. 34). [c.100]

Рис. 85. Зависимость свободной энергии образования, отнесенной к 1 атому углерода, от числа этих атомов в молекулах алканов и алкенов нормального Рис. 85. <a href="/info/629741">Зависимость свободной энергии</a> образования, отнесенной к 1 <a href="/info/10974">атому углерода</a>, от числа этих атомов в <a href="/info/301171">молекулах алканов</a> и алкенов нормального
    Скорость химической реакции возрастает в присутствии катализатора. Действие катализатора объясняется тем, что при его участии возникают нестойкие промежуточные соединения активированные комплексы), распад которых приводит к образованию продуктов реакции. При этом энергия активации реакции понижается и активными становятся некоторые молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие катализатора. В результате общее число активных молекул возрастает и скорость реакции увеличивается. [c.93]

    Выделяющаяся при этом энергия образования комплекса передается центральной С—С-связи молекулы полиарилэтана, и молекула переходит в возбужденное состояние. Если энергия, сообщенная центральной С—С-связи полиарилэтана, достаточно велика, произойдет диссоциация молекулы. Отме- [c.41]

    Энергия кристаллической решетки. Энергия кристаллической решетки — это энергия образования соединения кристаллической формы из свободных атомов (энергия атомной решетки) или из газообразных ионов (энергия ионной решетки). Так, в ионном кристалле Na l каждый ион взаимодействует с шестью ионами противоположного знака. Сумма этих взаимодействий равна энергии ионизации кристалла, которая выражается уравнением [c.48]

    В гл. 1 было показано, что образование ионов нри растворении электролитов, т. е. процесс электролитической диссоциации, требует значительной затраты энергии. Происхождение этой энергии даже не рассматривалось в теории Аррениуса, хотя без решения этого вонроса невозможно понять ни причин, лежащих в основе электролитической диссоциации, ни ее природы. [c.47]

    V—L — конденсация, для которых характерны явления метастабильности. Во всех этих переходах образование новой фазы происходит через возникновение ее трехмерных зародышей и неизбежно связано с увеличением границы раздела, а следовательно, и с возрастанием энергии системы. Трехмерным зародышем называется микрообразование новой фазы с размерами, обеспечивающими установление равновесия между ним и окружающей средой, т. е. старой фазой, внутри которой оно возникает. При переходах Si->S2, L S и V->S трехмерный зародыш — это зародыш твердой фазы, возникший в результате соответствующих превращений прежней твердой Si (рекристаллизация, появление нового твердого химического вещества), жидкой L (кристаллизация, выпадение осадка) или газообразной V (десублимация) фаз. При переходах L- V и V- -l. это зародыши пара — пузырьки (кипение) или зародыши >кидкости — капли (конденсация). [c.329]

    Как показывает опыт, каждая определенная химическая связь между атомами имеет более или менее постоянную величину энергии вне зависимости от того, в какое химическое соединение эти атомы входят. Кроме того, атомные связи обладают приблияуенпым свойством аддитивности, т. о. энергии образования молекулы из свободных атомов в газообразном состоянии приблизительно равна сумме энергии связи отдельных ес частиц. [c.111]

    С другой стороны, химический состав среды и ее полярность определяют, будут ли и в какой степени растворяться в ней конкретные ПАВ, что зависит от ван-дер-ваальсовой составляющей энергии связи этого ПАВ со средой. Чем эта энергия связи выше и чем растворимость ПАВ лучше, тем хуже его поверхностные (в частности, защитные и противокоррозионные) свойства. Молекулы среды способны вступать в межмолекулярное взаимодействие с молекулами ПАВ с образованием Н-ком-плексов, я-комплексов и комплексов с переносом заряда. Тем самым молекулы ПАВ поляризуются, увеличивается их дипольный момент и относительная степень ионности. Все это приводит к возрастанию общего энергетического взаимодействия. [c.207]

    Свободная энергия образования Гиббса. Методы, использующие принцип аддитивности, дают возможность рассчитать термодинамические функции (энтальпию, энтропию и свободную энергию образования Гиббса), если известна структурная формула молекулы. Существует много способов вычисления значений этих величин от простых и наименее точных, основанных на суммировании долей атомов, до сложных и очень точных, в которых учитываются конститутивные факторы (соседство групп и т. д.). В качестве примера рассмотрим аддитивный метод расчета свободной энергии образования Гиббса, разработанный Ван Кревеленом и Чермином  [c.82]

    Такой механизм образования метана приводит к реакции второго порядка. Но наблюдаемая при этом энергия активации значительно выше 65 ккал в то время, как для других углеводородов [9] эта величина составляет 63 0,5 ккал. Треверс [91] нашел, что избыток водорода препятствовал образованию этилена, но не приостанавливал образования метана. Он установил, что скорость образования метана определяется следующим уравнением  [c.84]

    Поступая аналогичным образом, можно вычислить изменение свободных энергий и для остальных (4 — 9) реакций. При желании, эти вычисления читатель может выполнить сам. Приведенный здесь пример показывает, что, располагая данными о свободных энергиях образования соединений из элементов только для четырех веществ (вода, окись углерода, углекислота, метан), мы смогли вычислить свободные энергии для девяти реакций причем, легко показать, что навги возможности этим далеко еще не исчерпаны. Пользуясь теми же данными, можно выполнить аналогичные расчеты, нанример, для реакций [c.101]

    Пользуясь величинами свободных энергий образования моноолефи-нов [21] и парафинов из элементов [33], определяем сначала свободные энергии реакций (VHIa—Ville), логарифмы констант, константы этих реакций, а затем, применив найденное нами соотношение, [c.267]

    Второй метод корреляционного расчета имеет ограниченное применение, поскольку достигаемая точность расчета свободных энергий образования — невелика (1 ккал моль). В табл. УП-1 включены термодинамические характеристики изомеров н-геитана, из которых можно сделать вывод о том, что между характеристиками изомеров не существует большой разницы это обстоятельство подчеркивает важность точного расчета равновесных характеристик. [c.374]

    Для экспериментальной проверки карбидного механизма синтеза смесь СО и водорода была пропущена над радиоактивным карбидом железа ГваС [360]. Полученная при этом углеводородная смесь содержала только 10—15% от того количества радиоактивного С1 , которое должно было образоваться, если бы РезС действительно было промежуточным соединением. Наконец, свободная энергия образования РезС и РезС из элементов настолько велика, что их восстановление в алифатические углеводороды Се п выше термодинамически невозможно [374], [380]. [c.596]

    Для осуществления первой стадии (образования мульти-, плетного комплекса) реагирующие молекулы должны получить энергию, необходимую для разрыва связей при этом выделяется энергия образования мультиплетного комплекса. Разность этих энергий и есть (в первом приближении) энергия активации, которая, очевидно, уменьшается с увеличением сродства катализатора к субстрату. Для осуществления второй стадии (распада мультиплетного комплекса с образованием продуктов реакции) мультиплетному комплексу должна быть сообщена энергия, необходимая для разрыва связей в нем в результате выделяется энергия образования конечных продуктов. Разносгь этих энергий определяет скорость второй стадии. Таким образом, безграничное увеличение сродства катализатора к субстрату не приведет к безграничному ускорению каталитического процесса. До определенного предела (пока скорость процесса определяется первой стадией) энергия активации будет уменьшаться и активность катализатора будет увеличиваться. Од- [c.346]

    Энтальпия и внутренняя энергия образования простых веществ, согласно приведенному определению, равны нулю. Если элемент образует несколько простых веществ (гра(11ит и алмаз, белый и красный фосфор и т. п.), то стандартным считается состояние злег,1бнта в виде наиболее устойчивой при данных условиях модификации (например, при обычных условиях— графит в случае углерода, Оо в случае кислорода и т. д.) энтальпия и внутренняя энергия образования этой, наиболее устойчивой модификации принимаются равными нулю. [c.75]

    Если возбуждение атома, приводящее к увеличению числа неспарениых электронов, связано с очень большими затратами энергии, то эти затраты не, компенсируются энергией образования новых связей тогда такой процесс в целом оказывается энергетически навыгодным. Так, атомы кислорода и фтора 16 имеют свободных орбиталей во внешнем электронном слое  [c.129]

    Энергия подородной связи значительно меньше энергии обычной ковалентной связи (150—400 кДж/моль). Она равна примерно 8 кДж/моль у соединений азота и достигает около 40 кДнсоединений фтора. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т. е. их объединение в димеры (удвоергные молекулы) или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар. Именно ассоциация молекул, затрудняющая отрыв нх друг от друга, и служит причиной аномально высоких температур плавления н кипения таких веществ как фтороводород, вода, аммиак. Другие особенности этих веществ, обусловленные образованием водородных связей и ассоциацией молекул, будут рассмотрены ниже, при нзученни отделыгьгх соединений. [c.156]

    Превращения энергии при химических реакциях. Химические реакции протекают с выделением или с поглощением энергии. Обычно эта энергия выделяется или поглощается в виде теплоты. Так, горение, соединение металлов с серой или с хлором, нейтрализация кислот щелочами сопровождаются выделением значительных количеств теплоты. Наоборот, такие реакции как разложение карбоната кальция, образование оксида азота(II) из азота и кислорода требуют для своего протекаиия ненрерывного притока теплоты извне и тотчас же приостанавливаются, если нагревание прекращается. Ясно, что этп реакции протекают с поглощением теплоты. [c.166]


Смотреть страницы где упоминается термин Этил, энергия образования: [c.66]    [c.446]    [c.316]    [c.36]    [c.40]    [c.362]    [c.45]    [c.95]    [c.217]    [c.64]    [c.105]    [c.177]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.228 , c.229 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.228 , c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия образования



© 2022 chem21.info Реклама на сайте