Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная энергия образования водородной связи

    К особому случаю электростатических сил направленного действия относится водородная связь [3]. Она возникает между двумя партнерами, один из которых содержит атом водорода, присоединенный к электроотрицательному атому, а другой— свободную пару электронов X—Н---У (здесь X — атом с высокой электроотрицательностью, т. е. Р, О, Ы Н — атом водорода, У—атом с неподеленной парой электронов, Н---У — водородная связь). Чем сильнее электроотрицательность X, тем более положителен водород в связи X—Н. При этом кислород имеет в газовой хроматографии наибольшее значение для высших аналогов этих трех элементов энергии водородных связей имеют тот же порядок, что и обычные силы притяжения [4]. В соединениях с гидроксильной группой атом водорода приобретает положительный заряд благодаря перемещению электронов к электроотрицательному атому кислорода (например, в карбоновых кислотах, спиртах, фенолах, воде) и смещается к атомам, обладающим неподеленной парой электронов, т. е. к атомам фтора, кислорода, азота (во фторсодержащих соединениях, простых и сложных эфирах, кетонах, альдегидах, карбоновых кислотах, спиртах, фенолах, аминах и т. п.). Сходным образом ведет себя атом водорода в ЫН- и СН-группах, если азот (например, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, органических нитро- и цианистых соединениях с а-атомами водорода) становятся отрицательными благодаря особенностям химической структуры соединения. Энергия образования водородной связи примерно на порядок больше, чем энергия обычного межмолекулярного взаимодействия, однако она гораздо меньше энергии образования химической связи. Вследствие этого энергию образования водородной связи можно объяснить не только электростатическим взаимодействием ХН и V. Второе взаимодействие можно приписать [c.71]


    У азотсодержащих ПАВ энергия связи с водой возрастает от первичного атома N к третичному и у последнего она на порядок превышает свободную энергию испарения и энергию связи с малополярной средой, поэтому можно заключить, что в образовании водородных связей с водой участвуют не атомы водорода активных групп при азоте, а неподеленные электронные пары самого азота. [c.202]

    Квадратные скобки обозначают концентрации. Свободная энергия образования водородной связи [c.96]

    Преимущественный вклад в свободную энергию образования водородной связи вносит энтальпия (см. табл.4). Это справедливо для соединений, образующих одну водородную связь, так как при этом изменяются лишь трансляционные степени свободы. Для соединений с двумя и большим числом водородных связей при их образовании теряются также и вращательные степени свободы и энтропийный вклад становится больше. Отмечено [2948] существование компенсационной зависимости и при образовании водородной связи. [c.272]

    Следовательно, водородная связь возникает благодаря тому, что ядро атома водорода, находящееся в полярной группе, временно разделяется между двумя электроотрицательными атомами, причем его электронная конфигурация дополняется свободной парой электронов одного из них. Расчеты энергии образования водородной связи показали, что в белках Н-связи обусловлены главным образом действием электростатических сил, тогда как на / олю ковалентного фактора приходится не более 10%. [c.90]

    Следует отметить, что солюбилизация спиртов, в отличие от углеводородов, характеризуется отрицательным изменением энтальпии. В этом случае наряду с выигрышем энтропии солюбилизации благоприятствует также энергетический фактор. Он обусловлен, по-видимому, специфическим взаимодействием полярных групп солюбилизата и ПАВ (ион-дипольное взаимодействие и образование водородных связей), что дает дополнительный выигрыш свободной энергии [23]. [c.79]

    Водородная связь между кислотой и основанием, например растворителем, двояко влияет на силу кислот. С одной стороны, образование продуктов присоединения поляризует молекулу кислоты и как бы подготовляет ее к дальнейшей диссоциации, но, с другой стороны, образование прочного продукта присоединения уменьшает активную массу диссоциирующей кислоты и тем самым уменьшает ее способность к диссоциации. Энергия, выделенная при образовании продукта присоединения, является результатом выделения энергии при образовании собственно водородной связи и поглощения энергии, затрачиваемой на деформацию связей между водородом и остальными атомами в молекуле, например, затратой энергии на деформацию связи ОН в молекулах фенолов и карбоновых кислот. Выделенная свободная энергия является результатом суммарного эффекта. Так как энергия выделяется, образование водородной связи уменьшает способность кислоты к диссоциации. Большая способность кислот к диссоциации в растворителях, образующих более прочные соединения, является результатом того, что, как правило, эти растворители более основные и характеризуются большей энергией сольватации ионов, и в первую очередь протонов. Большая энергия сольватации компенсирует уменьшение свободной энергии раствора при образовании водородной связи. В результате этого кислоты в таких растворителях диссоциируют сильнее. [c.294]


    Щ = он — энергия (свободная энергия) взаимообмена при образовании водородной связи между молекулами спирта  [c.225]

    Процессы в каталитическом центре могут стабилизировать переходное состояние. До сих пор подчеркивался тот факт, что дальние взаимодействия поставляют свободную энергию активируемым группам в каталитическом центре фермент-субстратного комплекса. Однако взаимодействия и в самом каталитическом центре могут стабилизировать переходное состояние и тем самым вносить вклад в эффективность ферментативного катализа. В химотрипсине выигрыш энергии, обеспечивающийся образованием двух водородных связей между активированным субстратом и атомами азота остова, а также частичной компенсацией заряда скрытого внутри белка остатка Азр-102 (рис. 11.1), способствует компенсации энергии образования напряженной связи между ферментом и субстратом в тетраэдрическом комплексе [5371. [c.281]

    Прн подборе стационарной фазы для хроматографического анализа решающее значение имеют ее полярность и селективность. Эти ПОНЯТИЯ еще четко не определены и трактуются различно. При подборе стационарных фаз приходится руководствоваться качественными соображениями, основанными на представлениях о характере сил взаимодействия. В последнее время при выборе стационарных фаз чаще начинает использоваться термодинамический подход. Поляр но сть стационарной фазы можно оценить ее снособ но-стью к различным вендам межмолекулярных взаимодействий лове-лич,1[не дифференциальной мольной свободной энергии растворения АС. Полярность фазы необходимо оценивать по ряду веществ,специфичных для различных типов взаимодействий. В настоящее время для оценки дисперсионного взаимодействия широко используется метиленовое звено н-алканов. Значение АО для бензола характеризует способность к образованию я-комплексов, бутанол-1—к образованию водородной связи с электронно-донорными связями стационарной фазы. Пентанон-2 — слабый донор электронов и может применяться для характеристики донорно-акцепторных комплексов. Нитропропаи-1 имеет относительно большой дипольный момент /) = 3,6 Кл-м и может выявить способиость фаз к ориентационному взаимодействию. Одновременно он может с рядом фаз давать и донорно-акцепторные комплексы. [c.303]

    Для количественного предсказания коэффициентов раснреде-ления кислот важно знать также свободную энергию образования водородной связи молекулы кислоты с молекулой экстрагента. Общеизвестно, что сама энергия водородной связи лежит обычно в пределах 2—10 ккал/моль. Если учесть изменение энтропии в процессе ассоциации (см. табл. 1), то свободная энергия образования типа В... НА должна лежать приблизительно в преде-Jiax О—6 ккал моль. [c.49]

    Если такие водородные связи существуют, а карбоксильная и карбоксилатная группы в принципе ведут себя нормально (в смысле применимости приведенного значения бодные энергии первой и второй ступеней диссоциации этих кислот должны отличаться от нормальных значений приблизительно на одну и ту же абсолютную величину (но с разным знаком) — на величину свободной энергии образования водородной связи в моноанионе. Соответствующие данные приведены в табл. 15. Мы видим, что разности А= Р (эксп) — Р а(выч) подчиняются указанной закономерности, а для СООН при п=1 и п = 2 имеют противоположные знаки. Следовательно, у нас нет прямых оснований отнести аномалию карбоксильной и карбо-ксилатной групп за счет внутримолекулярных водородных связей. [c.107]

    Инфракрасные спектры в области ОН- и НН-колебаний также можно использовать для измерения степени взаимодействия галогенид-ионов (СГ, Вг", Г в виде тетраалкиламмониевых солей) с водой или К-ме-тилацетамидом в тетрахлориде углерода. Саймонс и др. [394] определили константы образования моносольватов при 22,5 °С. Сдвиги частот были приблизительно пропорциональны свободной энергии образования водородной связи. Константы образования моноаквакомплексов и комплексов с N-мeтилaцeтaмидoм оказались аналогичными измеренным для соответствующих метанольных сольватов, однако чувствительность частоты ЫН-колебаний оказалась меньшей, чем в случае частоты ОН-группы. [c.119]

    За последние годы были опубликованы результаты ряда прямых измерений свободной энергии образования водородной связи. Как правило, существует корреляция между эффектами заместителей (о) и устойчивостью образующихся водородных связей. Типичная корреляция такого типа для ряда замещенных пиридинов и фенолов в четыреххлористом углероде приведена на рис. 4. Как и следовало ожидать, электронодоиорные заместители в пиридине и электроноакцепторные заместители в феноле увеличивают [c.264]

    Прежде всего, вода влияет на водородные связи в глобуле. Для стабилизации элементов вторичной структуры и пространственной структуры в целом необходимо, чтобы образование внутримолекулярных водородных связей давало бы больший выигрыш свободной энергии, чем образование водородных связей с молекулами воды. Эти эффекты, однако, не столь значительны. Клотц и Франклин [79, 80] установили, что образование водородносвязанных димеров метилацетамида НзС—МН—СОСНз энергетически выгодно в органических растворителях, но не в воде. Теплота образования димера в ССЦ равна 4,0 ккал/моль, в СНС1з она равна 1,6 ккал/моль, а в воде близка к пулю. Птицын и Скворцов оценили энергию образования водородных связей в полиглутаминовой кислоте и в полилизине, проводя тео- [c.222]


    Кумарин рассматривают как 5,6-бензо-а-пирон, или как лактон цис-о-оксикоричиой (кумариновой) кислоты, которая в свободном состоянии неустойчива ввиду того, что за счет неподеленной пары электронов карбонильной группы и атома водорода гидроксила, находящихся в цис-положении, происходит циклизация и образование лактонного кольца. Легкость образования такой связи зависит от стерических факторов, так как энергия образования водородной связи относительно мала, внутримолекулярное взаимодействие осуществляется с наибольшим энергетическим эффектом при замыкании ненапряженных пяти- и шестичленных циклов. [c.56]

    Поскольку растворение терпенофенолов происходит в гидро-ксилсодержащих растворителях как в условиях газо-жидкостной хроматографии, так и при диссоциации, то можно предположить, что существенный вклад в величины и Af рьон вносит энергия образования водородных связей. По тому следует ожидать корреляции между хроматографическими характеристикадги и реакционной способностью фенолов, в данном случае с логарифмом константы ионизации рКа. Свободная энергия любого процесса есть результат суммарного воздействия энтальпийных и энтропцйиы.х факторов [3] [c.18]

    Необходимо отметить, что такие подсчеты не обеспечивают действительно удовлетворительного определения относительных вероятностей обеих реакций. Сомнительно, чтобы мог быть замещен атом водорода как таковой. Значительно вероятнее положение, что атом водорода будет удален при помощи другого свободного радикала (X VIII), так что любой суммарный энергетический расчет стадии, определяющей скорость реакции, должен включать определение энергии образования новой связи,, образуемой водородным атомом  [c.463]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Стабилизация переходного состояния реакции за счет образования водородных связей. Энтальпия образования водородной связи ДН составляет —(4—8) ккал/моль, т. е. —(16,8—33,6) кДж/моль (см. б в гл. 1). Если строение переходного состояния X...Y такое, что не требует замораживания дополнительных связей при сближении групп Е и R (и тем самым обеспечивает образование внутримолекулярной водородной связи без потери энтропии), то величина AGs в утр (уравнение 2.19) определится указанным значением АЯ. Следовательно ускорение реакции в этом случае может достигать значений (уг/уц) in 10 —10 В противном случае, когда образование дополнительной водородной связи в переходном состоянии требует дальнейшего замораживания его структуры, термодинамически невыгодное изменение энтропии на каждую замороженную связь составит —(5—7) кал/моль/град (для модели с подвижными боковыми группами аминокислотных остатков, включенных в жесткую полипептиднук> цепь) [18]. Это соответствует увеличению свободной энергии актР1  [c.46]

    Известно, что вода — сильно структурированная жидкость. Существующие модели жидкой воды признают наличие в ней ближнего порядка — участков, имеющих льдоподобную ажурную тетраэдрическую структуру (кластеров), в которых молекулы воды соединены водородными связями. Кластеры находятся в равновесии с несвязанными молекулами воды, заполняющими области неплотной упаковки внутри структуры воды. Вода, связанная в кластерах, имеет меньшую энергию и энтропию, чем свободная, так как образование водородных связей сопровождается выделением тепла и возрастанием упорядоченности в системе. Структурированная вода обладает также меньшей плотностью и трансляционной подщжност1>ю, большей теплоемкостью. Несвязанная вода имеет большую плотность, но лишена упорядоченности. [c.51]

    Смедения полосы поглощения валентных колебаний свободных силанольных групп поверхности аэросила Л-Уон увеличиваются сим-батно с увеличением разности теплот адсорбции органических оснований В на гидроксилированной и дегидроксилированной поверхности (А ) по мере увеличения энергии водородной связи 81—ОН. .. В. В случае особенно сильных оснований образование водородной связи может завершиться переходом протона сила-нольной гр уппы поверхности на основание с образованием иона. Этот переход облегчается при возникновении с данной группой 81—ОН внутримолекулярной водородной связи по ее кислороду со стороны соседней силанольной группы (см. табл. 3.2 и раздел 3.6). [c.69]

    Таким образом, электростатическая модель Ингольда-Хьюза качественно правильно предсказывает влияние растворителя на скорость нуклеофильного замещения у насьпценного атома углерода. Однако она учитьшает лищь электростатическую ориентацию растворителя относительно реагентов и совершенно игнорирует специфическое донорно-акцепторное взаимодействие или образование водородных связей с молекулами растворителя, которые вместе составляют наиболее важную особенность процессов ион-дипольного и диполь-дипольного взаимодействия. Кроме того, эта теория рассматривает только одну составляющую свободной энергии активации АО, а именно энтальпию активации ЛВ, не принимая во внимание изменение энтропии активации ЛЗ, чей вклад может бьпъ очень значителен. [c.114]

    Чтобы понять природу водородной связи, следует вспомнить, что протон, имеющий свободную Ь-орбиталь, может взаимодействовать по донорно-акцепторному механизму с неподеленной парой электронов с образованием ковалентной связи. Атом водорода, связанный с электроотрицательным атомом, в силу оттягивания электронного облака а-связи его партнером можно рассматривать как частично лишенным своего электрона, т. е. частично ионизованным. В результате этого и возникает некоторое, не столь сильное, как в случае свободного протона, но все же вполне ощутимое взаимодействие связанного с электроотрицательным элементом протона с неподеленной парой электронов второго атома. Энергия водородной связи для разных соединений лежит в пределах 0,1—0,35 эВ и, как правило, заметно превышает энергию вандерваальсовых взаимодействий. Важнейшим представителем молекул, способных к образованию водородных связей, являются молекулы воды. Фактически в воде не существует свободных молекул Н 2О, а имеются ассоциаты, образованные несколькими молекулами, например [c.107]

    Исследование влияния легирующих элементов позволило установить связь между типом и составом карбидных фаз, находящихся в стали, и ее водородостойкостью, а также определить, какое количество того или иного легирующего элемента делает сталь при данных условиях водородостойкой. Можно отметить, что элементы, расположенные в IV периоде периодической системы правее железа, практически не оказывают влияния на водородостойкость стали. Элементы, расположенные левее железа, резко повышают стойкость стали против водородной корроэии. Качественно эта зависимость совпадает с порядком, в котором изменяется сродство металлов к углероду, оцениваемое по свободной энергии образования соответствующего карбида (табл. б). Известно, что связь в карбидах осуществляет- [c.159]

    На основании спектроскопических данных проведен расчет физикохимических свойств гидроксильной группы, представляющих интерес для структурных корреляций и характеристики реакционной способности замещенных фенолов — силовой постоянной связи О—Н К, межьядерного расстояния г, первой производной от дипольного момента О—Н по длине связи /с1ц/с1г/, характеризующей абсолютное значение изменения дипольного момента при растяжении связи, дипольного момента связи О—Н ц, разности частот валентных колебаний О—Н, соответствующих свободному и связанному состоянию гидроксила Ду, энергии водородной связи О—Н...0 Е, удлинения связи О—Н при образовании водородной связи О—Н...0 Дг, расстояния Я (О...О). [c.35]

    Каким образом клеткам удается достичь столь высокой степени точности в выборе нуж ного основания в процессах репликации и транскрипции, а также при спаривании кодона с антикодоном в процессе синтеза белка В ранних работах исследователи часто высказывали мнение, что специфичность спаривания оснований определяется исключительно образованием двух (или соответственно трех) водородных связей и стабилизацией за счет взаимодействия соседних участков спирали. Оказалось, однако, что свободная энергия образования пар оснований мала (гл. 2, разд. Г, 6), а дополнительная свободная энергия, обусловленная связыванием основания с концом уже существующей цепи, не в состоянии обеспечить специфичность спаривания. Исходя из современных энзимологических данных, можно предположить, что важную роль в обеспечении правильности спаривания играет сам фермент. РНК- и ДНК-полимеразы — достаточно крупные молекулы. Следовательно, связывающее место фермента может полностью окружить двойную спираль. Если это так, то нетрудно представить себе, что лроцесс выбора основания может протекать так, как это показано на рис. 15-5. На приведенном рисунке изображено гуаниновое основание матричной цепи молекулы ДНК, расположенное в месте наращивания комплементарной цепи (ДНК или РНК) с З -конца. Для образования правильной пары оснований соответствующий нуклеозидтрифосфат должен быть пристроен до того, как произойдет реакция замещения, в результате которой нуклеотид присоединится к растущей цепи. Предположим, что у фермента есть связывающие места для дезоксирибозного компонента матричного нуклеотида и для сахарного компонента включающегося нуклеозидтрифосфата, причем эти места расположены на строго оцределенном расстоянии друг от друга. Как показано на рис. 15-5, в каждом связывающем [c.212]

    Разность между величинами свободной энергии укваториальиых и аксиальных заместителей в ккал/моль (1 кал = 4184 Дш) при 25° С. Чем более отрицательна величина —ДО, тем более устойчив экваториальный конформер. Величина О соответствует равному распределению экваториальных и аксиальных конформеров. Приведенные величины являются средними и могут зависеть от природы растворители, особенно -в тех случаях, где возможно образование водородных связей. [c.272]

    Молекулы воды образуют водородные связи не только друг с другом, но н с полярными группами растворенных соединений. В го же время любая группа, способная образовывать водородные связи с другой группой, может образовать водородные связи примерно такой же прочности и с молекулами воды. Именно поэтому водородные свяэи далеко не всегда способствуют ассоциации малых молекул в водных растворах. Если в неполярном растворителе какие-либо полярные молекулы прочно связываются друг с другом за счет водородных связей, это отнюдь не означает, что они будут ассоциировать и в воде. Что же в таком случае позволяет биохимикам утверждать, что водородные связи играют огромную роль в формировании структуры макромолекул и при взаимодействии биологически важных соединений Дело в том, что равновесие между состояниями, при которых пары взаимодействующих молекул в воде связаны друг с другом водородными связями или диссоциированы, легко смеш,ается в ту или другую сторону. Так, например, белки и нуклеиновые кислоты могут образовывать компактные структуры за счет внутримолекулярных водородных связей между определенными группами или же денатурировать вследствие образования водородных связей между данными группами и молекулами воды, причем разница в свободных энергиях этих двух состояний сравнительно невелика. [c.247]

    Примерно соответствует размеру растворенной молекулы. Свободная энергия образования такой полости довольно велика, поскольку этот процесс сопровождается разрывом большого числа водородных связей. В основном это энтальпийный (АЯ) эффект. 2. Теперь молекулы воды будут стремиться изменить свою ориентацию, приспосабливаясь к присутствию в полости неполярной молекулы. Ясно, что они переориентируются таким образом, чтобы обеспечить оптимальные условия для вандерваальсовых взаимодействий и образовать максимальное число водородных связей. В результате такой переориентации число водородных связей может даже увеличиться, поскольку водородные связи в воде могут образовываться самым разным образом. Особенно это относится к низким температурам, когда в воде присутствуют в значительном количестве льдоподобные структуры. Во многих случаях ограничение подвижности молекул воды, окружаюш,их гидрофобные группы, т. е. возрастание структурированности воды, оказывается самым важным результатом действия гидрофобных сил. При растворении углеводородов энтальпия образования новых водородных связей почти полностью компенсируется энтальпией образования полости. В результате суммарное изменение энтальпии (АЯ) при переходе неиолярных молекул из инертного растворителя в воду обычно близко к нулю (как правило, это небольшая положительная или отрицательная величина). Вместе с тем уменьшение подвижности молекул воды приводит к значительному уменьшению энтропии, т. е. дает отрицательное значение AS. Поскольку AG = AH—TAS, а член 7 А5 положителен, изменение свободной энергии при переходе гидрофобной молекулы из инертного растворителя в воду также является величиной положительной, т. е. такой переход невыгоден с энергетической точки зрения. Именно этим объясняется плохая растворимость углеводородов в воде. [c.248]

    Высокую диастереоселективность в данном случае следует объяснять промежуточным образованием водородной связи между надкислотой и гидроксильной группой, примыкающей к хиральному центру. Тем самым понижается свободная энергия активации ДС реакционного маршрута А в сравнении с реакционным маршрутом В (ускорение, обусловленное энтропией). Проведение реакции в протонных растворителях или с ацетилированным циклогексенолом приводит к потере селективности. [c.455]

    О том, что взаимодействие макромолекул целлюлозы в ее аморфных областях с молекулами воды является преобладающим, свидетельствует экзотермичность взаимодействия целлюлозы с водой [79]. Принимая, что в крахмале все ОН-группы доступны для воды, был рассчитан тепловой эффект присоединения 1 моль воды к группе ОН, он составил - 7,1 кДж [80]. Термодинамическое изучение взаимодействия воды с аморфной целлюлозой [81] показало, что при пониженном содержании воды взаимодействие сопровождается изменением как энтальпии, так и энтропии системы. Парциальная энтропия аморфных областей целлюлозы возрастает, а парциальная энтальпия воды уменьшается. Это обусловлено упорядочиванием молекул воды и разупоря-дочиванием сегментов целлюлозы при взаимодействии. При увеличении содержания воды упорядочивание молекул воды в системе уменьшается, а упорядочивание сегментов целлюлозы увеличивается, т.е. энтальпия возрастает по абсолютному значению, и ее вклад в свободную энергию образующейся системы становится преобладающим. Адсорбированная вода, ослабляя систему водородных связей в доступных областях целлюлозы, оказывает пластифицирующее действие на целлюлозу [76, 82], приводит к расстекловыванию аморфных областей и переводу полимера в высокоэластическое состояние благодаря возрастанию сегментальной подвижности, увеличению свободного объема, появлению свободных от водородных связей функциональных групп. Можно предполагать, что при расстекловывании становятся возможными и конформационные переходы элементарных звеньев целлюлозы, понижается энергия активации свободных ОН-групп. При этом вероятно повышение кислотности свободных от водородных связей гидроксилов [83]. Изменение сегментальной подвижности в присутствии воды происходит за счет индукционных эффектов при образовании водородных связей вода-целлюлоза с делокализацией электронной плотности [84]. Расчеты квантово-химическим полуэмпиричес-ким методом ППДП комплексов целлобиозы с водой и другими растворителями подтвердили [85], что при их взаимодействии атомы кислорода как целлобиозы, так и воды, участвующие в образовании водородной связи, получают дополнительный отрицательный заряд по сравнению с тем, который они имели до взаимодействия. Это закономерный результат переноса заряда при образовании комплекса. Установлено также, что возможно взаимодействие молекул воды не [c.379]

    Можно выделить две группы моделей модели двух структур и двух состояний. В первой учитывается кооперативный характер образования водородных связей в воде. К этой группе относится модель мерцающих кластеров или айсберговая модель, предложенная Франком [43], в которой вода рассматривается как идеальная смесь участков льдоподобной структуры с четырежды связанными молекулами воды и участков без водородных связей с более компактным расположением молекул. Основное отличие структуры жидкой воды от льда заключается в разрыве части связей иод действием усиленных тепловых колебаний решетки. При комнатной температуре в воде часть водородных связей разорвана. Однако равномерное распределение разорванных связей по всему объему воды невыгодно из-за кооперативного характера образования водородных связей. Образуются мнкрообласти, содержащие ассоциаты с максимальным числом водородных связей на молекулу, а следовательно, со структурой, близкой к структуре льда, обеспечивающей максимальное число связей, находящихся в равновесии со свободными молекулами воды. Локальные флуктуации энергии приводят к распаду кластеров и образованию новых упорядоченных ассоциатов — кластеров, время жизни которых порядка 10 сек. [c.9]

    Биполярные соединения, например низшие гомологи аминокислот, вследствие образования своей системы Н-связей разрушают структуру воды [42], а высшие гомологи оказывают противоположное влияние, так как роль большого углеводородного радикала в этом случае оказывается значительнее, чем роль функциональных групп молекулы [43]. В. М. Вдовенко, Ю. В. Гуриков и Е. К. Легин [41], рассматривая существующее равновесие между плотной и ажурной структурами воды, показали, что при растворении в воде неэлектролита равновесие между этими структурами смещается в сторону той, которая лучше растворяет молекулы неэлектролита. Величина свободной энергии гидратации при этом определяется двумя главными факторами затратами энергии на образование полости, необходимой для внедрения молекулы (эти затраты тем больше, чем больше размеры молекулы растворенного вещества и доля плотной структуры иоды в растворе) уменьшением свободной энергии в результате образования водородных связей между растворенными молекулами и окружающими их молекулами воды. Поскольку в плотной структуре больше ненасыщенных водородных связей, чем в ажурной, то уменьшение свободной энергии при образовании Н-связей с молекулами растворенного вещества в этой структуре тоже больше. Значительное число работ посвящено упрочнению структуры воды при растворении углеводородов [4, 44—47]. [c.17]

    Растворы ПАВ молекулярно-дисперсны вплоть до ККМ, что четко подтверждается результатами измерений осмотического коэффициента [И]. Коллигативные свойства растворов ПАВ также вплоть до ККМ отклоняются от свойств идеальных одноодновалентных электролитов не более чем на 5% [12]. Но, как показали измерения эквивалентной электропроводности [11, 13], некоторые ПАВ образуют димеры. Процесс димеризации, не очень распространенный в растворах ПАВ, сильно зависит от их молекулярной структуры. Если углеводородная цепь достаточно длинна, свободная энергия системы в результате димеризации уменьшается. Для того чтобы уравновесить электрическое отталкивание при сближении двух ионных групп и уменьшение энтропии поступательного движения примерно на 20 э. е., необходима большая площадь контакта между двумя углеводородными цепями и достаточная концентрация молекулярно-диспергированного вещества. Поэтому димеризация облегчается с ростом длины углеводородной цепи. Содержание димера возрастает с увеличением объемной концентрации вплоть до ККМ, оставаясь при дальнейшем росте концентрации почти неизменным. Димериза-цию не следует рассматривать как начало мицеллообразования, так как образование димера из мономера является результатом образования водородных связей аналогично тому, что имеет место для уксусной кислоты в газовой фазе. Когда пар становится насыщенным, начинает выделяться жидкая уксусная кислота, находящаяся в равновесии с мономером и димером. Образование мицелл можно рассматривать подобно этому процессу разделения фаз [14], за исключением того, что в мицеллах объединяется конечное, а не бесконечно большое число частиц. На такой модели основываются многие теории мицеллообразования, причем в соответствии с таким представлением активность ПАВ выше ККМ должна быть практически постоянной. Это подтверждает зависимость поверхностного натяжения от концентрации, ясно показывающая, что выше ККМ активность ПАВ действительно постоянна. При этом в уравнении изотермы адсорбции Гиббса [c.15]


Смотреть страницы где упоминается термин Свободная энергия образования водородной связи: [c.437]    [c.437]    [c.357]    [c.437]    [c.256]    [c.302]    [c.274]    [c.277]    [c.220]    [c.387]    [c.455]    [c.236]   
Эмульсии (1972) -- [ c.437 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Свободная энергия

Связь водородная, Водородная связь

Связь связь с энергией

Связь энергия Энергия связи

Энергия образования

Энергия свободная образования

Энергия связи



© 2024 chem21.info Реклама на сайте