Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия образования поверхности кристалла

    Грамм-атомная поверхностная энергия Е . Величина — энергия образования поверхности, содержащей один грамм-атом вещества, распределенного в монослой, с расстояниями между частицами, равными соответствующим расстояниям на грани рассматриваемого кристалла. Эта величина бывает в определенных случаях полезной. Площадь одного грамм-атома вещества, распределенного в монослой при плотности атомов на 1 равна [c.82]


    Сравнение реакционной способности ступенчатых поверхностей кристалла с реакционной способностью нанесенных Р1-катализаторов показывает, что структура полидисперсных частиц Р1 в катализаторе может быть с успехом воспроизведена ступенчатыми поверхностями. Установлено, что атомарные ступени играют определяющую роль при превращениях углеводородов, а также при диссоциации Н2 и других двухатомных молекул с большой энергией связи [237]. Показано, что реакция дегидрирования циклогексана до циклогексена не зависит от структуры поверхности монокристалла Р1 (структурно-нечувствительная реакция). В то же время реакции дегидрирования циклогексена и гидрогенолиза циклогексана структурно-чувствительны. В свете полученных результатов предложена [238] расширенная классификация реакций, зависящих от структуры поверхности металла. А именно, предложено отнести к особому классу реакции, скорость которых зависит от размера активных частиц катализатора или от плотности атомарных ступенек и выступов на них, и реакции, скорость которых зависит от вторичных изменений структуры поверхности катализатора (например, из-за образования в ходе реакции углеродистых отложений, а также других эффектов самоотравления). На основе проведенного анализа предложена модель каталитически активной поверхности Р1, учитывающая атомную структуру поверх- [c.165]

    Опишем процесс массовой кристаллизации из растворов и газовой фазы с учетом контактного вторичного зародышеобразования. Контактное зародышеобразование [30, 33, 38—41] осуществляется посредством маточных кристаллов, если они сталкиваются с другой поверхностью, которой может быть поверхность других кристаллов или стенок кристаллизатора и мешалки. Контактное зародышеобразование вызывает у исследователей значительный интерес, так как вклад его в образование кристаллов наибольший среди всех других видов зародышеобразования [35, 33, 39]. В опубликованных исследованиях для этого типа зародышеобразования контакт достигался или скольжением кристалла вдоль наклонной стеклянной поверхности, погруженной в пересыщенный раствор того же самого вещества [30], или столкновением с мешалкой, или же контрольным ударным контактом между кристаллической затравкой и прутком, сделанными из различных материалов [33, 40]. Существует непосредственная корреляция между числом образовавшихся зародышей и энергией удара при постоянной площади соприкосновения. Авторы работ [33, 42] отмечают сильную зависимость скорости контактного зародышеобразования от пересыщения и предлагают объяснение этого механизма новые центры образуются в жидкой фазе около кристалла или происходят из затравочного кристалла в результате истирания при соударении, при котором от поверхности кристалла откалываются маленькие кусочки, но выживают и получают право на дальнейший рост только те, размер которых больше критического для данного пересыщения. Изучению влияния на контактное зародышеобразование размеров затравочных кристаллов и интенсивности перемешивания посвящены работы [40, 43]. [c.47]


    Неравномерность распределения энергии по поверхности можно показать наглядно, если поместить кристалл медного купороса в спиртовый раствор сероводорода при этом почернение вследствие образования сульфида меди начинается с углов и ребер. Даже раз- [c.107]

    Структура кристалла образуется самопроизвольно. Структурные единицы в процессе кристаллизации складываются в должном порядке, так как только при этом они достаточно прочно присоединяются к поверхности кристалла, теряя часть своей энергии, которая выделяется в окружающую среду. При данных температуре и давлении другие кристаллические структуры для данного состава вещества обычно не существуют. Другое дело самопроизвольное образование структуры некристаллического вещества. Насколько его энергетическое состояние отличается от равновесного, какой из бесчисленного количества возможных вариантов структуры реализуется, в каждом данном случае зависит от условий, прежде всего от скорости отвердевания. [c.178]

    Совсем по-иному влияют на процесс кристаллизации растворимые примеси. Дело в том, что зародыш кристалла при своем образовании стремится оттеснить инородные примесные молекулы, что ведет к обогащению этими молекулами слоя расплава, окружающего границы зародыша. По этой причине участие молекул основного вещества в росте зародыша становится затруднительным и для достижения зародышем критического размера уже требуется большее переохлаждение. В присутствии примеси может изменяться (как правило, уменьшается) и скорость роста кристалла. Это, по-видимому, обусловлено адсорбцией примесных молекул на поверхности кристалла. Если адсорбция происходит на активных местах роста, то такое локальное отравление поверхности кристалла тормозит образование кристаллического слоя и рост кристалла замедляется по сравнению с его ростом из чистого расплава. Но, с другой стороны, адсорбция примесных молекул может приводить к уменьшению поверхностной энергии кристалла. Это, в свою очередь, связано с повышением шероховатости поверхности, [c.109]

    Из соотношения (П1.55) следует, что при постоянных параметрах процесса противоточной кристаллизации стационарное распределение примеси в твердой (аналогично и в жидкой) фазе по высоте колонны должно иметь экспоненциальный характер, что наблюдается и в других противоточных методах глубокой очистки [см. уравнение (11.66)]. Однако, как известно, в реальных условиях при перемещении твердой фазы в колонном аппарате она подвергается частичной перекристаллизации, вследствие чего размер составляющих ее кристаллов изменяется. Дело в том, что при своем образовании в зоне кристаллизации они, по существу, имеют уже неодинаковый размер вследствие неоднородности температуры переохлажденного расплава у охлаждаемой поверхности. Выходящая из зоны кристаллизации такая мелкодисперсная кристаллическая масса обладает избыточной поверхностной энергией. Следовательно, рассматриваемая система кристаллы — расплав при этом является термодинамически неустойчивой, что обусловливает протекание в ней прежде всего процессов, направленных в сторону уменьшения поверхностной энергии твердой фазы. Это будет характеризоваться увеличением размера частиц твердой фазы, т. е. снижением удельной поверхности кристаллов в колонне. В результате кристаллы при своем движении по колонне должны или укрупняться или число их должно уменьшаться. Из имеющихся в литературе экспериментальных данных следует, что в кристаллизационной колонне протекают оба эти явления происходит плавление мелких и одновременно рост более крупных кристаллов, т. е. в процессе противоточной кристаллизации происходит увеличение среднего размера движущихся кристаллов. [c.140]

    Рассмотрим, как связаны дислокации с образующимися при травлении ямками. Нарушения в решетке приводят к появлению на поверхности кристалла областей с различной энергией химических связей. Это вызывает изменения энергии активации процесса химического травления. В тех местах поверхности, где энергия активации минимальна, происходит наиболее интенсивное травление, что и приводит к образованию ямок. При выявлении мест выхода дислокаций на кристаллической плоскости (П1) ямки травления имеют форму треугольных углублений. [c.91]

    Согласно молекулярно-кинетической адсорбционной) теории частицы, образующие кристаллическую решетку, сначала адсорбируются на поверхности растущего кристалла, причем они сохраняют часть своей энергии и поэтому способны перемещаться по поверхности. Сталкиваясь друг с другом, они превращаются в двухмерные зародыши, которые, присоединяясь к кристаллической решетке, создают новый слой на поверхности кристалла. Для образования двухмерных зародышей необходимо достаточное пересыщение раствора, контактирующего с адсорбционным слоем. Имеется в виду, что адсорбционный слой образуется очень быстро и внешняя диффузия не лимитирует процесса роста. [c.245]


    На размеры и форму образующихся кристаллов сильно влияют находящиеся в растворе примеси, особенно поверхностно-активных веществ. Некоторые из них специально вводят в качестве модификаторов для получения крупнокристаллических продуктов. Например, укрупнения кристаллов КС1 достигают добавкой в раствор малых количеств (10 —10" %) алифатических аминов, полифосфатов и др. Механизм этого явления изучен недостаточно. Предполагают, что введение добавок 1) увеличивает метастабильное пересыщение раствора и соответственна скорость роста кристаллов, не повышая скорости образования зародышей 2) уменьшает скорость появления зародышей, влияя на поверхностное натяжение и на энергию активации их образования 3) вследствие адсорбции на поверхности кристаллов увеличивает число дислокаций на ней, что ускоряет их рост и др. [c.250]

    Физический смысл уравнения (VI.27) состоит в том, что в переохлажденной жидкости, которая термодинамически неустойчива по отношению к бесконечной твердой фазе, образование равновесного кристалла размером г требует затраты энергии Гиббса, равной 7з свободной энергии поверхности, тогда как остальные /з этой величины компенсируются выигрышем С при переходе от объема жидкости к объему твердой фазы. Сказанное проиллюстрировано на рис. 40 графиком зависимости О (г), где г — параметр длины кристалла, аналогичный радиусу шара б — толщина [c.180]

    Распределение электронов. В металлах отдельные уровни [см. уравнение 169) ] сдвигаются при возникновении поверхности. Общее изменение энергии достигает нескольких электрон-вольт на каждый атом поверхности и составляет поверхностную энергию кристалла. Вместе с тем образование поверхности металла влияет на распределение электронов проводимости, что приводит к двум эффектам эмиссии электронов и электронной плотности [13], что чрезвычайно важно при адсорбции. [c.450]

    Действительно, концентрация насыщения раствора при неизменной дисперсности минерала (влияние упругой деформации на поверхностную энергию пренебрежимо мало) зависит только от температуры, и кратковременное пересыщение в прилегающем тонком слое раствора, вызванное приложенным напряжением вследствие увеличения химического потенциала кристалла, приводит к немедленному обратному осаждению всей растворившейся твердой фазы в виде осадка с ненапряженной решеткой (эпитаксия скажется только на первых моноатомных слоях, что имеет значение для равновесного потенциала металла и скорости растворения минерала в ненасыщенном растворе, но несущественно для минерала в пересыщенном растворе в связи с быстрым образованием толстого слоя осадка). В результате на поверхности кристалла, покрытого этим осадком, восстановится прежнее фазовое равновесие, и влияние напряжений не удастся зафиксировать. Поэтому механохимическое растворение минералов следует изучать в растворах, далеких от насыщения, используя нестационарные кинетические методы. [c.35]

    Как указывается в работе [19], имеется высокая вероятность образования плоских зародышей растворения твердого тела (моноатомных углублений) на тех участках поверхности, на которых плотность энергии решетки и химический потенциал больше такими местами прежде всего являются окрестности выхода краевых дислокаций. Поскольку на грани совершенного кристалла образование зародышей растворения носит случайный характер и требует относительно больших затрат энергии, то, если скорость такого растворения невелика, на грани реального кристалла, растворяющегося с заметной скоростью, образование зародышей должно происходить в местах пересечения дислокаций с поверхностью кристалла, т. е. в очагах локального плавления, где АР = = ст и указанные выше условия проявления механохимического эффекта могут выполняться (по крайней мере, для участков металла в состоянии медленного растворения в не слишком агрессивных электролитах). [c.26]

    Анализ величины свободной энергии системы и работы образования поверхности раздела фаз пересыщенный раствор —кристалл приводит к следующему выражению связи между размером кристаллического зародыша (гт) и степенью равновесного пересыщения (с/с )  [c.136]

    Эти величины, соизмеримые с энергиями образования дислокаций, вполне объясняют локализацию реакций разложения на поверхности кристаллов и протекание реакции разложения с большими скоростями, чем если бы разложению подвергалась начальная идеальная структура кристалла. [c.16]

    Однако если пересыщение углерода по отношению к алмазу слишком велико, и процесс выделения атомов углерода идет слишком быстро, могут создаться условия, при которых сделается возможным образование и рост зародышей графита как термодинамически более выгодной модификации, имеющей меньшую энергию, что перевесит влияние поверхностных сил, т. е. влияние автоэпитаксии. Вначале образование графита и рост алмаза будут идти параллельно на разных участках поверхности, но в дальнейшем— если пересыщение углерода достаточно велико — графит покроет всю поверхность кристалла алмаза и его рост прекратится. [c.19]

    Процесс растворения состоит в отрыве молекул от поверхности кристалла и переводе их в жидкую фазу в результате гидратирующего действия воды, С термодинамической точки зрения при этом происходит изменение энтальпии из-за разницы в значениях энергии кристаллической решетки и образующихся гидратов. Одновременно увеличивается энтропия вследствие перехода упорядоченной структуры кристалла в беспорядочную структуру раствора. Вместе с тем следует от.метить, что энтропия воды несколько уменьшается в результате упорядочения, связанного с образованием гидратных оболочек. [c.102]

    Новый научный подход к проблеме прочности твердого тела учитывает его неоднородности и дефекты внутреннего строения. Смыслом селективного разрушения кристаллических материалов становится раскрытие фаз при минимальной вновь образованной поверхности. При правильной физической организации процесса можно разрушить сколь угодно прочные материалы и притом без излишнего переизмельчения кристаллов, с минимальными потерями компонентов, затратами энергии и с высокой степенью измельчения. [c.11]

    Во-вторых, это выход на поверхность кристаллов граней разных индексов. С этой точки зрения физически однородна только такая поверхность, которая образована лишь гранями одного индекса кристалла, например, поверхность графитированной термической сажи, образованная лишь из базисной грани кристаллов графита, или поверхность кубического кристалла, образованная из грани (100). Кристаллические адсорбенты, на поверхность которых выходят несколько (часто однако немного, не более двух, трех) физически однородных граней разных индексов, можно рассматривать как смесь разных адсорбентов с физически однородными поверхностями. Если различные грани значительно различаются по заселенности атомами, ионами или молекулами, то межмолекулярные взаимодействия таких граней с адсорбирующимися молекулами сильно различаются по потенциальной энергии. Адсорбция на отдельных гранях таких кристаллов при достаточно низких температурах может происходить в основном по очереди на каждой из граней, соответственно, при разных величинах давления пара адсорбата в газовой фазе. [c.15]

    Взаимодействие этилена и водорода, например, с никелем на его поверхности приводит к образованию взаимно ориентированного состояния более низкой энергии вследствие частичного связывания лг-электронов двойной связи и а-электронов Н-Н связи вакантными орбиталями никеля (рис 10 2) Адсорбция этилена и водорода активирует С-Ся и Н-Н связи, то есть разрыхляет их, удлиняет (см раздел 5 2 5), делает более активными Взаимная ориентация позволяет реализовать синхронный механизм реакции В отличие от этана этилен действительно экзотермично реагирует с поверхностью кристалла никеля (ДЯ 240 кДж/моль) Водород также образует комплекс с никелем (ДЯ 120 кДж/моль) Образовавшийся в результате реакции этан десорбируется, освобождая место для следующей пары Понятно, что в таком случае скорость реакции тем выше, чем больше поверхность катализатора [c.262]

    Процесс периодической кристаллизации состоит из стадий образования зародышей кристаллов и их последующего роста. При непрерывном проведении процесса обе стадии протекают одновременно. Как было показано в гл. I, образование новой фазы в существующей возможно только при ее пересыщении, поскольку этот процесс требует расхода энергии на образование поверхности раздела фаз. Для процесса образования зародышей твердой фазы степень пересыщения раствора связана с радиусом зародыша г и удельной энергией поверхности раздела фаз а зависимостью (I. 124)  [c.482]

    Сингулярные поверхности. В отсутствие дислокации ШИ случайных ступеней для роста (перпендикулярно к себе) ингулярной поверхности необходимо образование зародыша 3 форме диска моноатомной высоты для каждого растущего моно- лоя. Выступы на ступенях, которые связывают подобный диск, атем функционируют в качестве мест внедрения атомов пара. 1 кристалл таким же образом, как это происходит для смежных юверхностей. Однако скорость образования стабильных зароды-цей в форме диска пропорциональна ехр(—АС 1кТ), где АС — (ритическая свободная энергия образования центров кристалли- ации. В случае модели разрушенной ближайшей соседней связи шеем [c.179]

    При взаимодействии частичных дислокаций образуются дефекты упаковки и двойники, представляющие собой двумерные поверхностные дефекты. Энергия образования поверхностей, связанных с дефектами упаковки и двойниками, на 1...3 порядка ниже энергий образования поверхности, разделяющей отдельные зерна кристаллов. В напряженном состоянии кристалла при реализации пластических деформаций могут образоваться дефекты с более высокими энергиями, в частности точечные, на образование которых необходимо затратить энергию 10 ..10 Дж. Изменение структуры вещества при измельчении бывает, как правило, достаточно сложным и обычно анализируется различными методами рентгеноструктурньш анализом, электронной микроскопией и ядерной гамма-резонансной спектроскопией (ЯГРС) [34] и др. [c.141]

    Из этих данных видно, что энергия образования поверхностей, связанных с дефектами упаковки и двойниками, на 1—3 порядка ниже энергий образования поверхности и на один порядок нияж энергии образования поверхности, разделяющей отдельные зерна кристаллов. Поэтому в услоиияк пластической деформации идет насыщение кристаллов дефектами упаковки и двойииками. [c.28]

    Ускорение ползучести в условиях действия адсорбционноактивных сред отмечалось неоднократно. В работе [261] рассматривается один из возможных механизмов влияния снижения свободной поверхностной энергии на некоторые механические характеристики твердых тел, в том числе и на скорость ползучести. Сущность механизма заключается в том, что свободная поверхность, наряду с межзеренной, рассматривается как основной источник точечных дефектов (вакансий) в объеме поликристалла. Мощность этого источника зависит от равновесной концентрации С - изломов на поверхностных ступенях атомарной высоты. Элементарный акт образования вакансии на поверхности заключается в переходе атома твердого тела на излом атомарной ступени. Следовательно, поток вакансий с поверхности кристалла в его объем должен возрастать при уменьшении поверхностной энергии о в соответствии с выражением 1п (—с1кТ). [c.90]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    Явления адсорбции в процессе комплексообразования. При приближении к поверхности кристалла карбамида молекулы н-алкана она адсорбируется на этой поверхности при этом кристалл-карбамида получает достаточно энергии для перехода из тетрагональной форумы в гексагональную. Калориметрическим методом была определена [16] теплота адсорбции н-октана арбамидом с размерами частиц 0,1-0,15 мм. Авторы этой работы установили, что теплота адсорбции н-алкана на твердой поверхности карбамида несколько больше вычисленной теплоты образования комплекса, составляющей 6,7 кДж на одну метильную группу. Поэтому они считают, что н-алканы удерживаются в решетке адсорбционными силами. В работе [8]явление адсорбции отрицается. [c.46]

    Одним из каиболее широко используемых на практике методов борьбы с образованием отложений является модификация поверхностных свойств подложки, целью которой является снижение энергии адгезии между кристаллами парафина и подложкой. Технически это доетигается двумя способами нанесением на поверхность подложки защитного покрытия, т.е. футеровкой поверхности подложки материалом, слабо сцепляющимся с парафиновой частицей, и путем добавления в нефть специальных присадок, которые, адсорбируясь на поверхности подложки, снижают сцепляемость с [c.137]

    Во всех рассуждениях, посвященных вопросу о механизме действия электростатических сил, использовалась идеализированная модель поверхности ионного кристалла, которая, как было указано в разделе IV, 2, получалась бы г[ри разрезании кристалла идеально острой бритвой. Отсутствие в нашем распо-рян<ении сведений относительно тех структурных особенностей, которые отличают поверхность кристалла от его объема, не позволяет сделать не только количественные, но и полуколи-чественные выводы о реальных энергиях адсорбции, обусловленных электростатическими силами. Можно утверждать только, что у большинства ионных кристаллов проявляется тенденция к образованию внешней адсорбирующей поверхности за счет отрицательных ионов, например ионов галоида и кислорода. Это явление будет снова упоминаться в дальнейшем (см,, например, разделы V, 5 и VI, 5), [c.35]

    Если теперь в обратном процессе, приготовив из исходных веществ эвтектический состав, нафеть его, то состав расплавится при более низкой температуре, чем температуры исходных веществ. Возникает вопрос, откуда кристаллы знают , находятся ли они в смеси или взяты в виде чистых веществ. Это можно объяснить, например, тем, что мелкие кристаллы обладают очень развитой поверхностью. На поверхности кристаллов всегда имеют место флуктуации, когда возникают мельчайшие капли расплавленного вещества. Если кристаллы различных веществ находятся в соприкосновении друг с другом, эти мельчайшие капли сливаются и образуют расплав. Если температура равна или выше / 33. , то возникшая флуктуация не исчезает, и начинается образование расплава. Расплав из микроскопических зародышей распространяется на весь образец за счет выигрыша энергии Гиббса при смешении. [c.202]

    При реакциях между твердыми веществами наряду с процессами, протекающими на поверхности раздела фаз, и процессами образования зародышей кристаллов при образовании новой фазы большое значение имеют также процессы переноса в кристаллах. Для ускорения относительно медленной объемной диффузии необходим подвод тепловой энергии. Поэтому все реакции между твердыми веществами, как правило, проводятся при повышенных температурах. П(зскольку химическая активность твердых веществ в значительной мере определяется их структурой и величиной поверхности, исходные вещества перед проведением реакции размалывают в тонкий порошок или измельчают каким-либо иным способом, т. е. переводят вещества в состояние с сильно развитой поверхностью. Тем самым осуществляется активация за счет механической энергии (разд. 33.9.2.6). Для проведения реакций между твердыми соединениями чаще всего используют смеси порошков или прессованные таблетки. Для установления равновесия обычно требуется постепенное нагревание до довольна высокой температуры. Для исследования конечных продуктов и кинетических измерений особенно удобны структурно-аналитические и физические методы анализа. При определении механизмов реакции было установлено, что в некоторых твердофазных реакциях перенос компонентов реакции происходит через газовую фазу. [c.437]

    Топохимические реакции начинаются обычно не на всей поверхности исходного твердого вещества, а на отдельных ее участках — зародышах ядер кристаллизации новой фазы (продукта), которые образуются на поверхности кристалла. Ядра кристаллизации появляются раньше всего в областях дефектов кристаллической решетки. В простейшем случае это могут быть, например, выходы дислокаций на поверхности, вакансии, расположение атомов (ионов) в междоузлиях и т. п. Таким точкам, или элементам кристаллической решетки, свойственна повышенная энергия Гиббса и, следовательно, более высокая реакционная способность. Зародыши ядер называют также потенциальными центрами образования ядер. На рис. 167 представлена схема распространения реакции в кристалле. Около поверхностных зародышей начинается рост сферических ядер. начальные центрызарождреакции. [c.409]

    Дальнейшее развитие теории ДЭС идет в основном по линик построения еще более сложных моделей, включающих диффузное распределение заряда и потенциала не только в жидкой фазе, но и в приповерхностном слое твердой фазы (внутренней обладке). Для ионных кристаллов это связано с изменением энергии образования дефектов (ионов внедрения и вакансий) вблизи поверхности для окислов и гидроокисей — с адсорбцией ионов в пористом [c.187]

    Дальнейшее развитие теории ДЭС идет в основном по линии построения еще более сложных моделей, включающих диффузное распределение заряда и потенциала не только в жидкой, но и в приповерхностном слое твердой фазы (внутренней обкладке). Для ионных кристаллов это связано с изменением энергии образования дефектов (иоНов внедрения и вакансий) вблизи поверхности, для оксидов и гидроксидов — с адсорбцией ионов в пористом слое ( гелеобразном слое), характерном, например, для стекол для высокополимерных ионитов — с адсорбцией ионов в матрице, постепенно уменьшающейся в глубь фазы ионита. Несмотря на видимое различие причин, для всех этих представлений характерна замечательная общность следствий, а именно некоторая часть скачка потенциала приходится на твердую фазу, и поверхностный потенциал г зона границе раздела (а тем более — потенциал ilJi) оказывается меньшим, чем межфазная разность потенциалов Д<р. [c.207]

    Основные виды адсорбции по энергетике взаимодействия были уже рассмотрены выше (гл. 5), но адсорбент-катализатор нас интересовал лишь с точки зрения снижения энергии активации реакций, идущих в газовой среде. Здесь мы рассмотрим механизм адсорбции на границе раздела фаз. Значительная неуравновешенность частиц, образующих поверхность раздела, создает свободную энергию поверхности, которая распределена неравномерно, особенно на границе раздела газ (или жидкий раствор) —твердое тело, так как граница раздела со стороны газа или жидкой фазы в силу своей подвижности в большей степени подвержена релаксаци.ч. На границе раздела твердой фазы наряду с участками высокой активности наблюдаются участки малой активности. Так, например, наиболее активные участки металлических поверхностей — скопления вакансий, выходы краевых или винтовых дислокаций, наличие примесных атомов и ступеней, образующихся на кристаллической поверхности (см. гл. 4). Нарушения кристаллической структуры особенно характерны для тонкораздробленных кристаллов, обладающих высокой активностью. Такого типа кристаллы и используются в качестве катализатора после осаждения их на какой-нибудь инертной подложке. Образование на поверхности кристаллов центров различен активости схематически показано на рис. 117. [c.216]

    Практически это значение определяется путем подсчета числа так называемых ямок травления, образующихся в точках выхода линии дислокации, например на поверхность кристалла при химической обработке этой поверхности подходящим реагентом (трави-телем). При такой обработке кристалла растворение вещества происходит повсеместно, однако избыточная энергия деформации вблизи дислокации приводит к более быстрому растворению вещества в этом месте, вызывая образование углубления (ямки) у выхода каждой линии дислокации. В результате этого на поверхности грани кристалла возникают так называемые фигуры травления. Число ямок на единице площади подсчитывается под микроскопом. [c.92]

    Таким образом, кристаллизация в пачках сводится к согласо- ванному повороту звеньев , полимерных цепей, обеспечивающему наиболее выгодное размещение боковых групп. Относительная легкость осуществления такого поворота находится в полном соответствии со сравнительно большой скоростью кристаллизации большинства регулярных полимеров при оптимальной температуре. Пачки при кристаллизации, вследствие возникновения границы раздела, приобретают поверхностное натяжение. Под влиянием избыточной поверхностной энергии они способны путем многократного изгибания на 180° самопроизвольно складываться в ленты с меньшей поверхностью . Требование дальнейшего снижения поверхностного натяжения приводит к соединению лент в ламели (см. рис. 120) и наслоению ламелей друг на друга с образованием правильного кристалла. Этот процесс наслоения происходит не путем присоединения отдельных макромолекул к растущей грани кристалла, а за счет упорядоченной агрегации все более крупньгх структурных единиц, что подтверждается данным , полученными методом рассеяния рентгеновских лучей под малыми >1лами (см. с. 430). Возникающие при этом ленты , ламели и единичные кристаллы видны под электронным микроскопом. [c.437]

    С другой стороны, в 1927—1928 гг. Косселем и Странским был развит молекулярно-кинетический подход к рассмотрению кристаллизационных явлений. Важную роль в их теории играет так называемое положение на половине кристалла . Это положение является самовоспроизводимым если кристалл достаточно большой, то присоединение или отрыв одной частицы от этого полонгеиия не вызывает никаких изменений — ни геометрических, ни энергетических. При равновесии с окружающей средой вероятности присоединения и отрыва от положения на половине кристалла равны между собой и работа отрыва одной частицы равна энергии решетки кристалла (на одну частицу). Эти свойства положения полукристалла превращают его в своеобразный эталон сравнения вероятностей элементарных процессов отрыва и присоединения и к другим местам на поверхности кристалла. Таким образом, из данных определения работ отрыва частиц при различных их положениях на кристаллической поверхности выявились важные следствия о структуре разного типа кристаллографических граней как в состоянии равновесия, так и при их росте или растворении, т. е. была создана наглядная полуколичественная картина всего процесса кристаллизации. Из нее следует, что рост плотпоупакованных граней кристалла энергетически затруднен из-за необходимости предварительного образования стабильных в отношении дальнейшего роста двумерных комплексов. Однако на этом этапе внутренняя связь между трактовками Косселя — Странского и Фольмера оставалась невыясненной. [c.5]

    Задача состоит в определении энергий щ и А причем последнюю надо найти как функцию температуры. Лишь в особо простых случаях это оказывается возможным приближенно. Именно такой случай и рассматривался Р. Беккером обе фазы I и II должны иметь одинаковую решетку и очень близкие постоянные решетки. Энергия активации щ перехода молекулы из фазы I в фазу II может тогда быть принятой почти равной и — энергии активации для процесса обмена местами в решетке, которая определяется из температурной зависимости коэффициента диффузии. Труднее оказывается определение работы образования зародышей и соответственно необходимой для этого удельной свободной граничной энергии. Р. Беккер принимает, что последняя равна энергии, которая необходима для образования поверхности раздела фаз в 1 см. При ее расчете, согласно Брэггу и Вильямсу [118], принимается, что атомы связаны только с ближайшими соседями. В случае простой кубической решетки, лежащей в основе последующих расчетов, 6 = 6. Энергия связи атома складывается из энергий связей с шестью соседями. Энергия смешанного кристалла, состоящего из двух сортов атомов 1 и 2, может быть тогда представлена как сумма, включающая три энергии Ф1,1, Фг, 2, Ф1.2, характеризующие связи 1 — 1, 2—2 и 1—2. Если П = П1 + П2 представляет собой суммарное число строительных элементов смешанного кристалла, а п1/п = х1 и пг/п = лгг = 1 — аг, — мольные доли компонентов, то при статистическом распределении число связей 1—2 равно пЬх1Хг. Если этот смешанный кристалл разрушить и добавить ге, атомов к чистому кристаллу 1 и Пг атомов к чистому кристаллу 2, то [c.171]

    Каталитическая активность в отношении некоторых реакций явно не связана с наличием правильно образованных граней кристалла. Тэйлор первым указал на возможность действия как каталитически активных центров тех мест решетки (вершин, ребер, нарушений порядка), которые являются координационно ненасыщенными и обладают повышенной энергией. Увеличение дефектности решетки металлического никеля механической активацией или нейтронным облучением действительно повышает каталитическую активность в отношении таких реакций, как гидрирование этилена или разложение муравьиной кислоты. Хэдвалл показал, что активность оксидных катализаторов особенно велика в области фазовых превращений, когда достигаются наибольшая концентрация дефектов решетки и повышенное содержание энергии в твердом теле (эффект Хэдвалла). Наряду с изменением общей поверхности генерация дефектов решетки может привести к изменениям электронных свойств и повышению общей энергии твердого тела. Поэтому опытным путем трудно установить, какой из этих факторов обусловил изменение каталитической активности. [c.121]


Смотреть страницы где упоминается термин Энергия образования поверхности кристалла: [c.181]    [c.226]    [c.116]    [c.108]    [c.145]    [c.13]    [c.151]   
Кинетика и механизм кристаллизации (1971) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность энергия

Энергия образования

Энергия образования поверхности



© 2025 chem21.info Реклама на сайте