Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутония сульфат

    Потенциометрическое титрование. Значительно чаще при титровании трехвалентного плутония сульфатом церия(IV) применяется потенциометрическое определение эквивалентной точки. В сернокислой среде ввиду близости потенциалов вместе с плутонием титруется железо. [c.184]

    Ионы плутония дают характерное окрашивание водных растворов Рцз+ синее, Ри + —от желтого до коричневого, РиО —красио-фио-летовое, РиО — розовато-коричневое Все ионы могут находиться в растворе одновременно в равновесии. Ионы плутония всех степеней склонны к гидролизу и комплексообразованию. Наиболее устойчивый из гидроксидов — Ри(0Н)4 — бледно-зеленая студенистая масса. При ее взаимодействии с кислотами образуются различные растворимые соли плутония — сульфаты, нитраты, перхлораты и т. п. При прокаливании нитрата Ри(МОз)4 или сульфата Ри(504)2 образуется диоксид (IV) РиОг — желтовато-коричневый кристаллический порошок. [c.629]


    Экстракция Ыр этим растворителем идет также из растворов сульфатов и хлоридов [442]. Комплексообразующим веществом для Рц в разбавленной соляной или серной кислоте служит купфер-рон. Комплексы можно экстрагировать хлороформом совместно с другими ионами (Ре, 2г, Hf, ЫЬ, 5Ь, Т1, V, Та). Этим способом проводится отделение плутония от америция [435], а также плутония от облученного урана [429, 444]. Концентрация НС1 при этом равна 0,6 моль/л. [c.441]

    Ри(804)2. Сульфат плутония (1У) получают при выпаривании сернокислых растворов четырехвалентного плутония с последующим осторожным прокаливанием около 300° С для удаления избытка кислоты [48, 389]. Состав соединения был определен методом химического анализа. [c.86]

    В литературе описаны два метода получения водного сульфата плутония (1У). Первый из них основан на кристаллизации [c.86]

    Термогравиметрическое изучение сульфатов плутония (1У) [207, 716] показывает, что улетучивание воды из четырехводного сульфата заканчивается при 270—280° С. В интервале 280— 450° С небольшой наклон плато указывает на незначительное разложение сульфата. Разложение безводного сульфата до двуокиси начинается при температуре 500°С и заканчивается при 700°С (см. рис. 25). [c.86]

    Осадок пероксида захватывает из раствора анионы (80 4 N0 , С1 ). Пероксид плутония, осажденный в присутствии сульфат-иона, имеет оливково-зеленый, в отсутствие — светло-зеленый цвет [504]. [c.89]

    Оксалат-, сульфат- и нитрат-ионы не мешают фотометрированию при весовых соотношениях к плутонию, равных 1 25, 1 25 и 1 5000 соответственно. [c.168]

    Определению 1—10 мкг плутония не мешают <0,5 мг урана (VI), <1,0 мг железа (III) и хрома (III), <4,0 мг никеля, <5,0 мг алюминия и лантана. Значительные помехи оказывают фосфаты, сульфаты и органические комплексообразующие реагенты. [c.177]

    При работе по этому методу с применением автотитратора была получена точность 0,12% [730]. Образцы плутония перед определением переводили в сульфат. [c.185]

    И. В. Моисеев и Н. Н. Бородина (1955 г.) применили видоизмененный вариант этого метода для определения плутония в образцах, содержащих также хром и марганец. Плутоний предварительно отделяли от хрома и марганца осаждением его в виде купфероната. В отличие от первоначального варианта, титрование избытка двухвалентного железа после восстановления им Ри(У1) проводили раствором сульфата церия 1У) с ферроином в качестве индикатора. [c.200]

    По сообщению Купера [360], метод используется в опытном порядке для анализа производственных образцов плутония, наряду с потенциометрическим титрованием сульфатом церия (IV). [c.227]


    Определению Ри(1У) в виде оксалата мешают фториды и сульфаты. Уксусная кислота не оказывает заметного влияния на осаждение оксалата плутония(IV) при концентрациях ее в растворе до 5%. В растворе должны отсутствовать органические соединения, осаждающие или связывающие плутоний в комп-. лексные соединения. Оксалатный метод особенно ценен возможностью полного отделения Pu(IV) от О(VI). При значительном содержании урана в растворе осадитель вводят в количестве, необходимом не только для осаждения плутония, но также для связывания ионов 1Ю2 +. [c.259]

    Отделение продуктов деления от плутония основывается на том, что, если данный элемент — продукт деления сходен с одной из валентных форм плутония, то он будет отличаться от плутония в других валентных состояниях. В зависимости от числа повторяющихся циклов можно очистить плутоний до необходимой чистоты. Из приведенных в табл. 18 и 19 данных следует, что для использования сульфата калия, фосфорной, фтористоводородной, фитиновой и фениларсоновой кислот для извлечения и очистки плутония необходимо введение носителя (соли циркония, лантана, висмута и др.). При осаждении карбонатов или ацетатов из растворов, содержащих уран, сам уран служит носителем. [c.266]

    Вопрос о механизме действия перекиси водорода на растворы-плутония нельзя считать окончательно выясненным. Скорость восстановления Pu(IV) зависит от концентраций плутония, перекиси водорода и природы кислоты 3, стр. 239 353]. Следует учитывать образование пероксидных комплексов и возможность обратной реакции. При макроконцентрациях Pu(IV) устанавливается подвижное равновесие между Pu(IIl) и Pu(IV). В 0,5 М H l равновесие сдвигается в сторону образования Pu(III), и в растворе присутствует только несколько процентов Pu(IV). В серной кислоте вследствие стабилизации Pu(IV) сульфат-иона-ми равновесие смещено в противоположную сторону разбавленная перекись водорода быстро и почти полностью окисляет Pu(III). Под влиянием большого избытка Н2О2 индикаторные количества Pu(IV) переходят, по-видимому, в высшие валентные состояния. [c.63]

    Двойные сульфаты плутония (III). Двойные сульфаты осаждаются из кислых растворов добавлением избытка сульфата щелочного металла и метилового или этилового спирта [274, 275]. В зависимости от избытка сульфата щелочного металла выпадающие двойные сульфаты имеют формулу МеРи (804)2 сНгО или Ме5Ри(804)4 (где Ме —ион щелочного металла). [c.87]

    На рис. 38 представлена термогравиграмма бензолсульфината плутония (IV) (М. С. Милюкова, 1958 г.). При незначительном нагревании выше комнатной температуры начинается уменьшение веса осадка. Некоторое повышение веса при дальнейшем подъеме температуры может быть объяснено частичным окислением сульфиновой группы в сульфогруппу. Вид нисходящей ветви пиролизной кривой указывает на образование малоустойчивых промежуточных продуктов. Вес осадка на горизонтальной площадке в интервале температур 450—560° С приблизительно соответствует весу сульфата плутония. [c.101]

    Гексафторид плутония бурно реагирует с водой с образованием фторида плутонила PuOsFj, изоструктурного с UO2F2. При пропускании газообразного гексафторида через серную кислоту образуется розовый кристаллический осадок сульфата плутония. Механизм этой реакции неясен. [c.113]

    Из сказанного выше очевидна закономерность влияния анионов среды на образование комплекса плутония с тороном I в ряду НМ0з>НС1>НС104. В растворах 0,1—1,0 М Н2504 окрашенное соединение Ри(1У) с тороном I не образуется, вероятно, вследствие сильного конкурирующего комплексообразования с сульфат-ионами. [c.165]

    Титрование трехваленгного плутония до четырехвалентного— наиболее распространенный вид титрования плутония В качестве окислителя чаще всего применяют сульфат церия (IV). Разработаны также методы с применением бихромата калия, перманганата калия и ванадата аммония. Кроме специального слз чая анализа металлического плутония, при раство- [c.180]

    Одной из первых работ, в которой была использована эта реакция, является работа Коха [501]. Метод основан на предварительном восстановлении плутония (в количестве около 2,5 мг) в цинковом редукторе в растворах 1 N H2SO4 и последующем титровании полученного раствора в объеме 10 мл 0,0045 М раствором сульфата церия (IV). В качестве индикатора используют 0,025 М раствор ферроина (комплекса Fe(II) с-о-фенантроли-ном). Стандартизацию растворов плутония проводили весовым и радиометрическим методами. Полученные данные совпадали между собой с точностью до 0,1%- Среднее отклонение в восьми опытах составило 0,25%. [c.181]

    В работе была проверена возможность дальнейшего окисления Pu(IV) сульфатом церия(IV). При тройном избытке церия в растворах 1 и 5 Л/ H2SO4 через 2 часа стояния было найдено плутония всего на 8 и 7%, соответственно, больше истинного содержания. Таким образом, дальнейшее окисление плутония протекает достаточно медленно и не мешает определению конечной точки. Автор указывает на некоторую трудность наблюдения перехода индикатора в конечной точке и рекомендует проводить титрование при дневном освещении. [c.181]


    Установку титра раствора сульфата церия(IV) проводили при помощи очень чистого металлического плутония с известным содержанием примесей, а также при помощи АзгОз. Стандартное отклонение, полученное на больщом количестве образцов, составило 0,07%. Среднее отклонение результатов анализа от содержания плутония, рассчитанного из содержания примесей, составило около 0,03%. [c.182]

    Вотербери сообщает о предварительных исследованиях по прямому спектрофотометрическому титрованию Ри(П1) раствором церия (IV) по собственному поглощению Се(1У) [717]. Для анализа взвешенную порцию стандартного раствора сульфата плутония обрабатывали амальгамой цинка и затем быстро окисляли 98% Ри(1П) при помощи раствора церия(1У), приливаемого из весовой бюретки. Окончательное титрование проводили с использованием объемной бюретки емкостью 2 мл 0,01 М стандартным раствором церия (IV). Для предотвращения окисления Ри(1П) через ячейку пропускали аргон. Светопоглощение измеряли при 380 ммк на переделанном спектрофотометре Бекмен ДУ после добавления каждых 0,05—0,10 мл титранта вблизи конечной точки. Хотя светопоглощение Се(IV) максимально при 320 ммк, измерения оптической плотности проводят при 380 ммк, поскольку при 320 ммк довольно велико поглощение Ри(1У). Эквивалентную точку определяли по перегибу кривой зависимости светопоглощение — объем титранта. Для образцов от 200 до 400 мг плутония была получена точность до 0,03 отн.%. [c.183]

    Андерсон и др., на работу которых ссылается Метц [547], применяли метод, включающий восстановление плутония до трехвалентного состояния амальгамой цинка и последующее потенциометрическое титрование стандартным раствором сульфата церия (IV). Для анализа образцов (8—10 мг плутония) было получено среднее отклонение, равное 0,15 отн.%. На содержание железа вводили поправку, определяемую другим методом. [c.184]

    При определении плутония применяют также некоторые восстановители, избыток которых затем может быть оттитрован раздельно от плутония. Метц [547] сообщает, как об одном из первых методов, о потенциометрическом титровании Pu(III) до Pu(IV) после восстановления анализируемых образцов избытком сульфата или хлорида титана (III). Титрование восстановленных растворов сульфатом церия(IV) дает две эквивалентные точки, соответствующие окислению избытка Ti(III) и окислению Pu(III) до Pu(IV). При микроопределении [c.185]

    Хорошие результаты дает применение растворов двухвалентного хрома для восстановления плутония [423]. 1 —10 мг плутония в сульфатном растворе восстанавливали до трехвалентного состояния избытком сульфата хрома (II) в 1 М растворе H2SO4. Избыток восстановителя окисляли кислородом воздуха, что контролировалось достижением устойчивого потенциала цепи, состоящей из платинового и каломельного электродов. Pu(III) титровали затем до Pu(IV) стандартным раствором сульфата церия (IV), который приливали из шприцевой бюретки. Пр определении 2—10 мг плутония была получена точность 0,2%. при постоянной воспроизводимости. [c.185]

    Точно так же выполняют титрование в отсутствие плутония в холостом опыте, исключив операцию выпаривания и добавляя 10 мл раствора СгСЬ и 20 капель 9 Ai раствора H2SO4. Пересчитывают расход сульфата церия на объем раствора СгСЬ, использованный прн титровании плутония, и вводят поправку в результат титрования плутония. [c.186]

    П. Н. Палей и В. А. Заринский (1951 г.) исследовали пригодность бихромата калия для объемного определения плутония. Были получены удовлетворительные потенциометрические кривые при титровании около 2 мг Pu(III) до Pu(IV) 0,01 N раствором К2СГ2О7 в 3/V H2SO4. Величина скачка в эквивалентной точке примерно вдвое меньше, чем при использовании в качестве титранта сульфата церия(IV) (в сравнимых условиях). Дальнейшее окисление Pu(IV) идет очень медленно. [c.188]

    Раствор плутония, не содержащий сульфат- и фосфат-ионов, сначала сильно нагревают для удаления легколетучих кислот. Затем добавляют 1 мкл конц. НС1О4, которая содержит 10% НЫОз, и выпаривают возможно быстрее до объема 100—150 нл. Было показано, что при малой скорости выпаривания микроколичества плутония окисляются только частично или не окисляются совсем. Операция выпаривании должна быть закончена в 20 сек. Кипения раствора необходимо избегать. Пробы выпаривают 2—3 раза и, наконец, после охлаждения смешивают с 0,7—1,0 мкл 2 N N(2804. Полученный раствор РиОа + титруют 0,05—0,01 N раствором соли Мора. Конец бюретки и электроды не должны касаться стенок микроконуса во избежание захвата жидкости. [c.199]

    Наименее загрязненную двуокись плутония с составом, почти отвечающим сте сиометрии, получают при прокаливании пероксида плутония и оксалатов трех- и четырехвалентного плутония [3, стр. 169 237]. Прокаливание высушенных кристаллических оксалатов плутония (III) и (IV) и пероксида плутония (IV) производят при медленном повышении температуры от 25 до 700° С. Для предотвращения распыления осадка вследствие идущих одновременно процессов обезвоживания и разложения пероксид плутония (IV) необходимо нагревать в интервале температур от 90—200° С особенно осторожно. Сульфат-ион, входящий в структуру пероксида плутония (IV), улетучивается в виде SO3 при 600—700° С. Пероксид плутония осаждается в отсутствие сульфатов в виде мелкокристаллического осадка, содержащего другие -анионы, удаление которых происходит при более высокой температуре ( 1000° С). Оксалаты плутония следует прокаливать при температуре не ниже 900—950° С. Как уже отмечалось, для получения двуокиси плутония стехиометрического состава во всех случаях прокаливание проводят при 1050—1200° С. [c.253]

    Метод основан на свойстве Ри (III) и Ри (IV) соосаждаться из водных растворов с двойньш сульфатом калия и лантана. Шестивалентный плутоний не соосаждается в тех же условиях. Метод [143] заключается в осаждении плутония с двойным сульфатом лантана и калия в восстановительной среде и отделении лантана в виде двойного сульфата в окислительной среде. Второе осаждение плутония в восстановительной среде проводят на меньшем количестве лантана. За один цикл можно достаточно полно извлечь плутоний из исходного раствора и уменьшить количество носителя в 10—15 раз. Одновременно происходит существенная очистка плутония от продуктов деления. [c.269]

    Через азотнокислый исходный раствор пропускают сернистый газ для вос-стаиовлеиия плутония, после чего раствор насыщают твердым сульфатом калия. Затем прибавляют азотнокислый лантан и после отстаивания отделяют осадок. Состав раствора при осаждении из восстановительной среды 5--7% HNOa, SOa, 0,2—0,3 мг/мл лантана. Восстановление проводят в течение [c.269]


Смотреть страницы где упоминается термин Плутония сульфат: [c.295]    [c.86]    [c.86]    [c.87]    [c.87]    [c.87]    [c.107]    [c.186]    [c.192]    [c.192]    [c.194]    [c.200]    [c.200]    [c.203]    [c.203]    [c.240]    [c.258]    [c.269]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Отделение плутония двойным сульфатом лантана

Отделение плутония сульфатом калия

Плутоний

Титриметрическое определение плутония сульфатом церия



© 2025 chem21.info Реклама на сайте