Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Координационные по электронной конфигурации

    Рассмотрим некоторые комплексные соединения платины (IV). С позиции метода валентных связей можно показать, что для платины (IV) характерно координационное число 6. Электронная конфигурация валентных орбиталей атома платины [c.76]

    Координационное число Pd (IV) и Pt (IV) равно шести, что отвечает октаэдрической конфигурации комплексов. Последние диамагнитны, имеют следующую электронную конфигурацию  [c.616]


    Комплексные соединения очень разнообразны по строению и свойствам. Пока не найдено единого признака, по которому можно провести их полную классификацию. При классификации по координационному числу, по степени окисления комплексообразователя, по его электронной конфигурации, по структуре, по типу координационной связи получается одностороннее описание этих соединений. Наиболее удачным считается разделение комплексных соединений на классы по виду лиганда. [c.144]

    Устойчивое координационное число Т1 (III) равно 6 его октаэдрические комплексы имеют электронную конфигурацию [c.537]

    Соединения Сг (II), Мо (II), У (II). Для хрома в степени окисления +2 характерно координационное число 6. Это соответствует образованию, как правило, высокоспиновых комплексов (и структурных единиц) с электронной конфигурацией [c.553]

    Соединения Си (И). Степень окисления +2 характерна только для меди. Максимальное координационное число Си (II) равно б, что соответствует октаэдрическим комплексам (структурным единицам) следующей электронной конфигурации  [c.626]

    Ионы переходных металлов могут взаимодействовать с несколькими лигандами. Число лигандов, которые могут координироваться около иона металла (координационное число), зависит от электронной конфигурации иона металла и строения лиганда. [c.626]

    Поверхность твердого вещества может состоять как из атомов, так и из ионов, а его химические свойства зависят от их электронной структуры и расположения — от их электронной конфигурации, координационного числа и локальной симметрии. [c.16]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]


    К важным характеристикам комплексных частиц относятся заряд, радиус, координационное число, стереохимия, характер связи между центральным атомом и лигандом, электронная конфигурация частиц, заселенность орбиталей и др. [c.266]

    Какое координационное число наиболее- характерно для ионов З -элементов с электронной конфигурацией йЧ [c.124]

    Для марганца наиболее типичны координационные числа 6 и 4, для технеция и рения, кроме того, 7, 8 и даже 9. Влияние степени окисления и отвечающей ей электронной конфигурации атома на структуру комплексов (структурных единиц) марганца и его аналогов показано в табл. 37. [c.325]

    В соответствии с электронной конфигурацией атом кислорода может образовать две о-связи (координационное число атома кислорода в этом случае равно двум), либо иметь координационное число три или четыре за счет образования одинарных ковалентных связей. [c.470]

    Значительная часть свойств координационных соединений обус ловлена электронной конфигурацией центрального иона, донор ными и акцепторными свойствами лигандов и природой связи между лигандом и центральным ионом. По этой причине большее место в этой главе будет уделено этим аспектам химии координа ционных соединений, нежели вопросам стереохимии, типам изо мерин, реакциям замещения и окислительно-восстановительным реакциям. Здесь не будет рассмотрено и возрастающее значение координационных соединении в области аналитической химии, биохимии и электрохимии. Для детального изучения этих и других аспектов химии координационных соединений полезны многие прекрасные руководства . [c.232]

    Классификация комплексов по типу или природе координацион ной связи. Так как данный ион металла может образовывать не сколько различных типов связи, удобно рассматривать их в за висимости от электронной конфигурации различных лигандов Ниже приведены электронные типы монодентатных лигандов [c.241]

    Одним из наиболее полезных применений изотопного обмена было изучение реакций замещения в координационных соединениях. Оказалось возможным установить соотнощение электронной конфигурации центрального атома металла со скоростью обмена между координированными ионами и радиоактивными ионами в растворе. Многие комплексы обменивают свои анионы очень быстро, в то время как для других комплексов скорости обмена невелики. Это зависит, по-видимому, от заселенности -орбиталей в центральном атоме металла  [c.422]

    Вид гибридизации и структура координационного соединения определяются в основном электронной конфигурацией центрального атома комплексообразователя. Они зависят также и от природы лиганда. [c.115]

    Комплексные соединения. Трехзарядные ионы лантаноидов — элементов, относящихся к 4/-типу, обладают электронной конфигурацией (18 + + пе ), которой свойствен явно выраженный поляризующий эффект. Поэтому ионы лантаноидов обладают склонностью к комплексообразованию с преимущественным координационным числом, равным 6. Специфической особенностью ионов лантаноидов является комплексообразование с органическими лигандами, относящимися к классу оксикислот (лимонная кислота) или аминополиуксусных кислот (о которых говорилось выше). В связи с тем, что в последних, наряду с карбоксильной группой, имеются Ы-группы (амино, нитрило), они с ионами лантаноидов образуют внутрикомплексные (клешневидные) соединения. На свойстве ионов лантаноидов образовывать комплексные соединения с органическими кислотами основано их элюирование из сорбционных слоев ионнообменных смол. [c.284]

    Особенности реакций замещения в координационных соединениях в сильной степени зависят от геометрии (стереохимии) комплексных частиц, электронной конфигурации атома-комплексообразователя, природы лигандов и др. [c.279]

    Координационные числа комплексных частиц с электростатическим взаимодействием зависят также от размеров центрального атома комплексообразователя и лигандов. Они увеличиваются с увеличением размера центрального атома и уменьшением размера лигандов, например [AlFe] и [AII4]-, [BF4] и [AlFel . Для комплексных частиц с ковалентной связью координационное число определяется прежде всего электронной конфигурацией центрального атома-комплексообразователя, а точнее видом гибридизации его орбиталей и их взаимным расположением в пространстве. Последние определяют, как было показано в гл. 2, стереохимию молекулы, а следовательно, и координационное число. [c.267]

    Металлы с кубической гранецентрированной и гексагональной решетками в твердом состоянии. Рентгенографические и нейтронографические исследования показывают, что металлы, обладающие в твердом состоянии плотной упаковкой атомов, после плавления сохраняют ее. Это объясняется тем, что при переходе в жидкое состояние электронная конфигурация этих металлов и характер связи не изменяются. Действительно, атомы алюминия при конденсации металлического пара теряют внешний Зр-электрон. Образовавшиеся ионы А1+, обладая 2р 35 -конфигурацией, упаковываются в гранецентрированную кубическую решетку с параметром а = 4,04 Л. При плавлении электронная структура ионов не изменяется и плотная упаковка сохраняется. Незначительное уменьшение координационного числа связано с усилением трансляционной составляющей теплового движения атомов. Бериллий (конф. 15 2з ) и магний (конф. 2р 35 ) обладают высокими вторыми ионизационными потенциалами, поэтому при образовании кристалла их атомы отдают лишь один 5-электрон. Оставшийся второй -электрон придает сферическую форму однозарядным ионам, которые образуют в кристалле гексагональную решетку. При переходе в жидкое состояние электронная конфигурация ионов этих металлов и плотная упаковки существенно не изменяются. [c.176]


    Атомы сурьмы и висмута образуют ромбоэдрическую решетку с координационным числом 3 + 3. Они обладают внешней электронной конфигурацией 5s 5p и 6s 6p соответственно. Перекрывание орбиталей р-электронов обусловливает ковалентные связи атомов сурьмы и висмута в твердом состоянии. При плавлении происходит отделение всех валентных электронов, вследствие чего эти элементы приобретают свойства металлов, а их структура становится более плотной. [c.183]

    Стремление к образованию 18-электронной оболочки объясняет многие необычные структурные характеристики координационных соединений карбонилов металлов, соединений ценового, аре-нового и смешанного типов. Так, необычная структура карбонила кобальта Сог(СО)8 (VП) объясняется тем, что в ней достигается 18-электронная конфигурация валентной оболочки. Мостиковые карбонильные группы образуют многоцентровые связи, при формальном рассмотрении они отдают по одному электрону на оболочку каждого атома кобальта. Диамагнетизм Со2(СО)8 свидетельствует о спаривании эл,ектронов кобальта и образовании связи Со—Со. Действительно, расстояние Со—Со составляет по данным рентгеноструктурных исследований всего 2,5 А. Интересно отметить, что в растворе структура УП находится в равновесии с изомерной ей структурой XX, также согласующейся с правилом 18 электронов  [c.192]

    Соединения Мп (II), Тс (II), Re (II). Для марганца (II) характерно координационное число шесть, что соответствует октаэдрическому расположению связей. Соединения Мп (II) парамагнитны и, за ис1 лючением цианидов, содержат пять непарных электронов. Строекие высокоспиновых октаэдрических комплексов Мп (И) соответствует следующей электронной конфигурации  [c.573]

    Центральные атомы элементов 3-го и последующего периодов предоставляют для комплексообразования а-, р-, ( -орбитали. При переходе от одного элемента длинного периода к другому слева направо наблюдаются две противоположно действующих тенденции. Первая связана с электронной конфигурацией атома или иона комплексообразователя. Число электронов комплексообразователя, участвующих при образовании МО комплекса, определяется заселенностью его ( -орбиталей и к концу ряда ( -элементов близко к 10 (Ag . ..4( °, Си +. .. 3( , Zn +. .. Зй °). Вместе с электронами лигандов (например, при координационном числе 4 лиганды предоставляют для заполнения МО комплекса 2-4 = 8 электронов), их число становится достаточным для заполнения всех связывающих МО комплекса. Иллюстрацией это.му является упоминавшееся правило 18 электронов (см. предыдущий разд.). Поэтому с увеличением числа (п — l)(i-элeктpoнoв происходит сначала увеличение прочности комплексных соединений, достигающее максимума к середине периода (УП1 и соседние к [c.364]

    Известно также нийго комплексов N1 с координационным числом 4, причем такие комплексы ей слабо вааимодейстаующими лигандами имеют тетраэдрическое строение, а с сильными лигандами - плоское квадратное. Это обусловлено электронной конфигурацией данного иона, при которой в сильном поле лигацдов орбиталь не заполнена электронами, что позволяет [c.537]

    Мы уже обсуждали (гл. 6) факторы, определяющие форму неорга нических молекул, составленных из атомов переходных элементов. Главным образом это — размер и заряд центрального иона, наличие свободной электронной пары, возможность расширения валентного уровня сверхоктета, являющегося предельным для элементов второго периода, способность к образованию л -связей. стерические требования к группам, связанным с центральным атомом, и, вероятно, важнее всего принцип запрета Паули. Если рассматривать центральный атом со сферической симметрией, характерной для комплексов металлов, не имеющих свободных электронных пар, следует ожидать, и это действительно обнаруживается, правильные формы. Молекулы с координационными числами 2, 3, 4, 5, 6, 7 и 8 характеризуются следующими структура, чи линейной, треугольной, правильной тетраэдрической, тригональной бипирамидой, октаэдрической, пятиугольной бипирамидой и квадратной (архимедовой) антипризмой. Можно сказать, что всякий раз, когда электронный уровень атома переходного элемента, не принимающий участия в связи, будет иметь сферическую симметрию, структура таких комплексов будет правильной, определяемой только координационным числом. Можно вы писать электронные конфигурации, которые приводят к правильным симметричным комплексам. Для наиболее распространенных координационных чисел 6 и 4 имеют место следующие конфигу рации  [c.282]

    Известно, что металлы составляют основную часть всех элементов ( — 75%) периодической системы. Для них, как пранило, характерны низкие значения потенциалов ионизации и в связи с этим легкость образования положительных ионов. Металлы, а тем более их положительные ионы, имеют во внешнем электронном слое несколько вакантных орбиталей. Поэтому атом или ион металла может взаимодействовать по донорно-акцепторному механизму с нейтральными молекулами или нонами, обладаюшими неподеленной парой электронов. Последние называют лигандами. Говорят, что они координированы центральным атомом. Соединения, построенные по такому принципу, называются комплексными или координационными соединениями. Так, например, ион М может образовать комплексное соединение за счет вакантных орбиталей — одной 35- и трех Зр-. Атом никеля, электронная конфигурация которого [Ar]4s Зii имеет три вакантные 4р-орбитали и может с небольшой затратой энергии перейти в состояние с дополнительной вакантной З -орбиталью  [c.85]

    Максимальные мгновенные искажения должны наблюдаться для высокоспиновых комплексов с электронными конфигурациями й и (Сг--+, Мг 3+, Си +) и низкоспиновых с конфигурацией й ( o +). Возможность динамических искажений указывает на локальную нежесткость (пластичность) координационной сферы у этих катионов в кристаллическом состоянии под действием неизотропного окружения происходит фиксация одного из более выгодных в данной решетке искажений. В частности, для комплексов Си + очень характерна конфигурация удлиненного октаэдра. Например, в К2Ва[Си(Ы02)б] экваториальные расстояния Си—О равны 0,204, а аксиальные — 0,229 нм в Т12[Си (803)2] --0,199 и 0,244 нм соответственно. Правда, наблюдаются и правильные октаэдры в [Си(Н20)б] [5 Рб], [СиЕпз]504 и т. д. [c.156]

    Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к рассмотренным электронным оболочкам. Таковы водородная, металлическая и вандерваальсова связи. Далее мы рассмотрим каждый из указанных типов связи отдельно, но прежде нам необходимо рассмотреть понятие валентность элементов , так как имеет смысл говорить не просто о валентности элемента, но о валентности элемента в определенном химическом соединении. [c.70]

    Тетрагональное искажение октаэдрической конфигурации координационного узла снимает, как видно из рис. 56, вырождение 0-орбиталей октаэдра. Этот эффект, если величина его достаточна, чтобы привести к заметному расщеплению eg-уровня, может иметь особенно интересные магнетохимические следствия для d -электронной конфигурации. В сильном поле комплексы соответствующих октаэдрически координированных центральных ионов могут стать низкоспиновыми, т. е. диамагнитными. [c.182]

    В соответствии с теорией кристаллического поля плоскоквадратные комплексы часто встречаются у ионов с электронной конфигурацией (никель, палладий, платина) и (медь). Если ион не имеет ЭСКП, то обычно легко образуются тетраэдрические комплексы (й1°, с1 , й( °) это происходит в комплексах железа (111), цинка (И), алюминия (111), кадмия (11), марганца (II). Относительно высокие координационные числа характерны для легких переходных металлов. Поэтому квадратные комплексы чаще встречаются в соединениях меди, палладия, платины, а ионы с конфигурацией с1°—Ф обычно дают октаэдрические комплексы. Тип химической связи в комплексах зависит от положения соответствующего иона в последовательности переходных металлов ионы металлов, расположенных в начале ряда, дают преимущественно ионные комплексы, а в конце — ковалентные [ионные комплексы образует, например, ион титана (И), а ковалентные — ионы никеля или меди (II)], Комплексы анионного типа (например, СоС ) обычно имеют меньшие координационные числа, чем катионные. [c.227]


Смотреть страницы где упоминается термин Координационные по электронной конфигурации: [c.564]    [c.73]    [c.131]    [c.139]    [c.141]    [c.163]    [c.77]    [c.413]    [c.413]    [c.111]    [c.177]    [c.184]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Электрон конфигурации

Электронная конфигурация



© 2025 chem21.info Реклама на сайте