Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый метил в синтезах

    Хлористый этил можно получать также хлорированием этана — процесс ведут в реакторах, используемых для синтеза хлористого метила (см. рис. 3 и 4), применяя в качестве катализатора тетраэтилсвинец. Хлорирование этана осуществляют и в газовой фазе — в псев-доожиженном слое активного угля. Реакция в этом случае проводится ири 450 °С и объемном соотношении этан хлор = 8 . 1. Этан вступает в реакцию с хлором значительно легче, чем метан, что позволяет использовать для хлорирования даже природный газ, содержащий только 10% этана и 90% метана. В таких условиях этан хлорируется почти полностью, а образование хлорпроизводных метана при этом практически исключается. [c.33]


    В связи с ростом производства каустической соды и хлора, в перспективе намечается широкое развитие производства хлорорганического синтеза с получением таких важнейших продуктов, как глицерин, четыреххлористый углерод, хлористый метил, полихлорвиниловые смолы, трихлорэтилен и др. [c.282]

    Метанол является хорошим растворителем и антифризом. В последнее время он находит применение в качестве добавки к бензинам для предотвращения их застывания при низких температурах. Используется также для синтеза меламинов, хлористого метила, метилметакрилата и других продуктов. [c.100]

    Метанол впервые был обнаружен Р. Бойлем в 1661 году в продуктах сухой перегонки древесины (отсюда название метанола — древесный спирт). В чистом виде выделен в 1834 году Ж. Дюма и Э. Пелиго, установившими его формулу, синтезирован омылением хлористого метила М. Бертло в 1857 году. Промышленное производство метанола синтезом из водорода и оксида углерода (II) впервые было осуществлено в 1923 году и с тех пор непрерывно совершенствуется. В нашей стране производство метанола впервые организовано в [c.259]

    При помоши такой аппаратуры возможно проводить синтез при практически любых соотношениях хлор метан. Процесс можно регулировать для получения сравнительно больших количеств хлористых метила или метилена, но можно также получать четыреххлористый углерод за одну ступень без применения циркуляции избыточного углеводородного сырья. [c.166]

    В последнее десятилетие в мировой практике резко изменилось направление исследований в области синтеза бутилкаучука. Период 1960—1973 гг. характеризуется большим числом работ, связанных с поиском новых каталитических систем. Как правило, один из компонентов этих систем — это алюминийорганические соединения. В большинстве описанных в патентах изобретений синтез бутилкаучука осуществляется в-среде хлористого метила при низкой температуре (—100- --60 °С). Наиболее активно исследования в этом направлении ведутся в Японии, США, Италии и других странах [21]. [c.354]

    Описаны различные методы синтеза синэстрола (III), наиболее короткий путь — действие магния на анетол гидробромид (I), получаемый из анетола (анисового масла) и бромистого водорода (1940), в присутствии катализатора хлористого кобальта (1943), с последующим гидролизом диметилового эфира 3,4-ди-(п-оксифенил)-гексана (II) хлоргидратом анилина (в присутствии фенола), — концом реакции является прекращение выделения хлористого метила  [c.596]


    Прямой синтез проводят в проточных контактных аппаратах (рис. 61) кроме того, есть указания на осуществление его с распыленной контактной массой по типу реакций в кипящем слое (флюид-процесс) рециклами хлористого метила и контактного порошка при 3—4 ат и 330—370° (рис. 62) [421. [c.673]

    Синтез уксусной кислоты из хлористого метила и окиси углерода через ацетилхлорид  [c.737]

    Из хлорзамещенных парафинов широкое практическое применение получили хлористый метил — в качестве хладоагента, дихлорметан (СНгС12) используется для производства формалина, хлороформ и четыреххлористый углерод известны как растворители для ряда органических веществ. Монохлорпентаны служат сырьем для выработки спиртов. Хлорированные высокомолекулярные парафины применяются в синтезе ряда веществ (присадок), используемых для улучшения свойств минеральных масел. [c.142]

    Так, синтез тризамещенных бензолов может быть направлен в сторону преимущественного образования 1,2,4- или 1,3,5-производных. Замещению в мета-положение способствует применение большого количества (обычно 2 экв) хлористого алюминия (самого сильного катализатора), а также повышение температуры реакции. Влияние температуры можно наблюдать на примере реакции бензола с 3 моль хлористого метила взаимодействие прн 0°С приводит главным образом к [c.168]

    При проверке синтеза столь же хорошие результаты были получены более просто. Для этого слабый ток сухого хлористого метила пропускался непосредственно из баллона в реакционную смесь до тех пор, пока практически весь магний не вступал в реакцию. [c.420]

    Наиболее перспективно применение абгазного хлористого водорода в хлорорганическом синтезе вместо применявшегося для этой цели синтетического хлористого водорода. При производстве хлористого винила, найрита, хлористого этила, хлористого метила и др. могут потребляться многие сотни тысяч тонн, а в перспективе и миллионы тонн чистого хлористого водорода. Существенным недостатком такого использования абгазного хлористого водорода являются ограничения при выборе сырья для соответствующих производств ацетилена для производства хлорвинила, метанола — для хлористого метила и т. д. [c.284]

    Схема производства метилхлорсиланов методом прямого синтеза приведена на рис. 12. В реактор загружают свежеприготовленный кремне-медный сплав, включают электрообогрев и при 200 °С начинают подавать в аппарат азот через подогреватель со скоростью 8—, 12J iЗ/ч (на рисунке не показано) для сушки сплава. Температура в реакторе постепенно повышается до 340 °С. При достижении этой температуры подачу азота прекращают и начинают подавать газообразный хлористый метил. [c.45]

    Основным сырьем для прямого синтеза метил-, этил- и фенилхлорсиланов служат хлористый метил, хлористый этил и хлорбензол, а также кремне-медный сплав или механическая смесь порошков кремния II меди, так называемая контактная масса. [c.30]

    Для производства метилхлорсиланов целесообразнее применять хлористый метил, полученный этим способом, так как в таком продукте значительно меньше примесей, тормозящих реакцию прямого синтеза. [c.32]

    Хлористый водород и соляная кислота могут быть получены разными способами. В частности, они образуются в качестве побочного продукта в ряде органических синтезов, таких как термическое хлорирование хлористого метила для получения более высокохлорированных метанов — метиленхлорида, хлороформа и четыреххлористого углерода. [c.182]

    Реакция диспропорционирования диметилдихлорсилана под влиянием хлоридов алюминия резко ускоряется на поверхности меди в Присутствии хлористого метила. В связи с этим в процессе прямого синтеза возникают условия, когда образование триметилхлорсилана [c.41]

    Отгонка непрореагировавшего хлористого метила и ректификация смеси метилхлорсиланов. В результате прямого синтеза метилхлорсиланов образуется конденсат следуюш,его состава 40—70% метилхлорсиланов и 30—60% хлористого метила (непрореагировавшего). [c.47]

    МЕТАН СН4 — первый член гомологического ряда предельных углеводородов, Бесцветный газ, не имеющий запаха, малорастворим в воде. М. образуется в природе при разложении органических веществ без доступа воздуха на дне болот, в каменноугольных залежах (отсюда другое название М.— болотный, нли рудничный газ). В большом количестве М, образуется при коксовании каменного угля, гидрировании угля, нефти. В лаборатории М. получают действием воды на карбид алюминия. Л, — главная составная часть природных горючих газов. М. легче воздуха, смеси М. с воздухом взрывоопасны, М. горит бледным синим пламенем. М, широко используется в промышленности и быту как топливо, для получения водяного и синтез-газа, применяемых для органического синтеза углеводородов с большой молекулярной массой, спиртов, ацетилена, сажи, хлористого метила, хлорбро . метана, ни-грометака, цианистоводородной кислоты и др. [c.160]


    При помош,и процессов конверсии кислородом или водяным паром из метана получают синтез-газ (СО На) — прекрасное сырье для дальнейшего органического синтеза, а также чистую окись углерода, водород и синтез-газ (2На а) для производства аммиака, являюш,егося исходным сырьем для выработки удобрений. Неполным окислением метана при низких температурах могут быть получены формальдегид, метанол, ацетальде-гид. При хлорировании лгетана в промышленных условиях образуются хлористый метил, хлористый ыетплен, хлороформ и четыреххлористый углерод. Нитрованием метана получают нитрометан. [c.15]

    Путем хлорирования природного газа (метана) получают в промышленном масштабе хлористый метил H3 I и метилен-хлорид H2 I2 в последнее время разрабатывается также синтез хлороформа H J3 и четыреххлористого углерода J прямым хлорированием метана. [c.25]

    При хлорировании метана целевыми продуктами обычно являются хлористый метилен, хлороформ или их смесь с четыреххлористым углеродом. При целевом синтезе метиленхлорида мольное отношение метана к хлору берут равным 4 1, возвращая непревращенный метан и хлористый метил на реакцию. Прн целевом получении хлороформа мольное соотношение СН4 СЬ составляет 0 8 1, причем непревращенный метан и СНзС возвращают на реакцию, получая наряду с хлороформом метилеихлорид и четырех) лористый углерод. Хлорирование метана ведут как чисто тер-мич( ским путем при 500—550 °С, так и термокаталнтическим при 350--400°С. [c.120]

Рис. 61. Контактный аппарат для проведения прямого синтеза /—реактор тр бка для подачи ьонтакт-НОЙ массы Л—ленточная М шалка 4— мотор , 5 -шт цердля подачи хлористого метила < —фильтр 7—холодильник 8— штуцер для отвода газов приемник /( —штуцер для выгрузки отработанной контактной массы. Рис. 61. <a href="/info/109984">Контактный аппарат</a> для <a href="/info/1807345">проведения прямого</a> синтеза /—реактор тр бка для подачи ьонтакт-НОЙ массы Л—ленточная М шалка 4— мотор , 5 -шт цердля подачи <a href="/info/11507">хлористого метила</a> < —фильтр 7—холодильник 8— штуцер для <a href="/info/714239">отвода газов</a> приемник /( —штуцер для выгрузки отработанной контактной массы.
    В данном разделе речь пойдет о процессах галогенирования, под которыми подразумеваются все реакции введения в органические соединения атомов галогенов. Чаще всего это хлор из-за доступности и дешевизны, который получают электролизом раствора хлорида натрия. Хлорирование углеводородов и других органических соединений является очень важньш направлением органического синтеза, поскольку этим методом производят самые различные продукты, находящие широкое применение в народном хозяйстве. Это полупродукты для органического синтеза (хлористый метил, этил, аллил, хлорбензол, хлоргидрины, из которых получают XJюpoлeфины, спирты, окиси олефинов и т.д.) мономеры для получения смол, пластмасс, волокон (винилхлорид, хлоропрен, 1,2-дихлорэтан, монохлортрифторэтилен, тетрафторэтилен и т.д.) различные пестициды, хладоагенты, растворители, медицинские препараты и т.д. [c.75]

    Метанол широко применяется в технике. Он испольлуется для метилирования, например при синтезе моно- и диметиланилинов, для получения хлористого метила, диме-тилсульфата и метилового эфира толуолсульфокислоты, для приготовления формальдегида применяется для денатурировання этилового сппрта и как растворитель для лаков. [c.118]

    Хлористый метил (хлорметан) СНа—С1 — газ, применяется в качестве метилирующего агента в органическом синтезе и как хла-доагент в холодильных установках. [c.97]

    Хлористый метил применяется для получения кремнийоргапических соединений, иа основе полимеров которых получают каучуки, обладающие термической стабильностью и морозостойкостью, смолы для изготовления теплостойких лаков и электроизоляции, жидкости для гидрофобизации тканей и смазочные масла, обладающие малой зависимостью вязкости от температуры и большой термической стабильностью. Благодаря высокой активности хлора в молекуле хлористого метила он применяется в синтезах для метилирования органических соединений, например для получения метил-целлюлозы. [c.368]

    Этот синтез применим для получения альдегидов или кетонов (гл. И Кетоны , разд. В.8). Енолацетаты легко превращаются ир.Г Взанмодействии с ацетатом ртути(П) и хлористым калием в хлор-мер кур альдегиды или хлормеркуркетоны, которые образуют е по-лизамещенными производными хлористого метила р-замещепные альдегиды или кетоны [371. Выходы умеренные применение этой реакции ограничено, поскольку в ней используются замещенные метилгалогениды, которые легко образуют карбониевые ионы. [c.56]

    Обратный холодильник должен быть очень большой мощности, так как в противном случае будет теряться хлористый метил. Проверявшие синтез применяли холодильник типа холодильника Фридрихса, в котором размеры сосуда для охлаждающей смеси были спедующими длина — 30 см к наружный диаметр — 3 см. Наружный диаметр стеклянной рубашки, окружающей сосуд, был равен [c.420]

    Полезность органических галогенидов определяется, главньш образом, их широким использованием в органическом синтезе. Хлористый метил и этил - как алкилщ)уюшке средства хлорэтил - в производстве тетраэтилсвинца  [c.197]

    Основным требованием, предъявляемым к хлористому метилу, хлори-ртому этилу и хлорбензолу, является отсутствие примесей — побочных продуктов и особенно влаги. Попадание даже незначительного количества влаги в зону реакции приводит к гидролизу и конденсации продуктов, снижению активности контактной массы или кремне-медного сплава и к затуханию процесса. Поэтому в технологической схеме прямого синтеза обычно предусматривается установка для обезвоживания алкил- и арилхлоридов. Для этого, например, пропускают хлористый метил или хлористый этил через колонну, орошаемую серной кислотой, или используют другие водоотнимающие средства (прокаленный СаС12, А12О3). [c.34]

    В исходном сырье для прямого синтеза метилхлорсиланов — х.пористом метпле — имеются примеен влаги, метилового спирта, кислорода, сернистого ангидрида, хлористого мети.пена, диметило-вого эфира, окиси и двуокиси углерода и др. Большинство из них отрицательно влияет на синтез метилхлорсиланов вредные примеси хемосорбируются на активных центрах кремне-медного сплава и отравляют медный катализатор, что, естественно, тормозит реакцию хлористого мети.па с кремне-медным сплавом. Примерно та же картина наблюдается и при прямом синтезе этилхлорси.панов. [c.39]

    Получение метилхлорсиланов. Механизм этого процесса в настоящее время окончательно не установлен. Однако наиболее вероятным представляется следующий путь образования метилхлорсиланов при каталитическом действии меди на реакцию хлористого метила с кремнием. Предполагается, что кремне-медный сплав состоит либо из двух фаз — свободного кремния и интерметаллического соединения ugSi (т]-фаза), либо из ассоциата кремния с медью. В начальной стадии процесса при температуре синтеза хлористый метил взаимодействует с атомом кремния из интерметаллического соединения (или из ассоциата)  [c.44]

    Наряду с реакциями образования диметилдихлорсилана, ме-тилдихлорсплана, метилтрихлорсилана и триметилхлорсилана побочно образуются в различных количествах также трихлорсилан, четыреххлористый кремний, газообразные продукты (водород, метан) и твердый продукт — углерод образование газообразных и твердых веществ является результатом пиролиза хлористого метила и ме-тпльных и метиленовых радикалов. Все эти вещества получаются в различных соотношениях в зависимости от вида активатора кремне-медного сплава п количества подаваемого хлористого водорода. Необходимо также отметить, что образование углерода и накапливание его в контактной массе является одной из причин снижения активности кремне-медного сплава, повышения температуры синтеза, устгления пиролитических процессов и ухудшения состава реакционной смеси. [c.45]

    Синтез диметилфосфита осуществляют в обычном эмалированном аппарате при непрерывном дозировании в него трех- I хлористого фосфора и метилового спирта. Реакцию ведут при 20 С в вакууме. Выделяющееся тепло можно снимать, подавая в реакционнуК> смесь хлористый метил, который испаряется. При получении хлоре-фоса чистота диметилфосфита имеет большое значение чем чище ди- 1 метилфосфит, тем с большим выходом и лучшего качества получается хлорофос. Поэтому перед синтезом хлорофоса диметилфосфит-сырец отпаривают от хлористого водорода и хлористого метила в колоннах в глубоком вакууме с последующей дистилляцией при 130—135 °С 1 и остаточном давлении 20—40 мм рт. ст. [c.348]

    Синтез проводится в две ступени. Вначале изготовляется са.м реактий Гриньяра. В реактор загружают магний и залипают сухой эфир и хлористый метил. Реакция протекает по уравнению [c.208]

    Циклизация продуктов присоединения кетонов к четвертичным солям никотинамида. Описан интересный синтез 1-окси-З-арил- или 1-окси-З-алкил-2,7-нафтиридинов путем циклизации продуктов присоединения кетонов, легко получаемых из четвертичных солей никотинамида [76, 77]. 3-Фенилпроизвод-ное синтезировано из продукта присоединения с ацетофеноном. Можно применять также аддукты, полученные из хлорметилата никотинамида, причем метильная группа из промежуточного 2-хлорметилата нафтиридина удаляется возгонкой при 300° в виде хлористого метила [77]. [c.173]

    Выходяш,ие из хлоратора продукты реакции охлаждаются и последовательно проходят три колонны 4. В первой колонне хлористый водород поглош,ается водой. Во второй колонне хлорме-таны нейтрализуются водным раствором NaOH и в третьей колонне осушаются серной кислотой. Далее паро-газовая смесь компримируется до 10 ат, затем охлаждается в аппарате 7 до —40 С. Сконденсировавшиеся хлорметаны направляются на ректификацию для выделения индивидуальных продуктов, газы, содержащ,ие непрореагировавший метан и некоторые количества хлористого метила, возвраш,ают на хлорирование. Выход продуктов—85%, В промышленности органического синтеза хлористый метил (темп. кип. —23,7 °С, темп. пл. —97,6 °С, плотность при температуре кипения 0,992 aj M ) используется для введения метильной группы в органические соединения  [c.178]


Смотреть страницы где упоминается термин Хлористый метил в синтезах: [c.11]    [c.140]    [c.388]    [c.392]    [c.197]    [c.191]    [c.32]    [c.57]    [c.36]    [c.21]    [c.48]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.434 ]




ПОИСК





Смотрите так же термины и статьи:

Метил хлористый

метил синтез



© 2024 chem21.info Реклама на сайте