Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серин рацемизация

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]


    У бактерий найдены ферменты, катализирующие рацемизацию аланина, метионина, глутамата, пролина, лизина и серина, а также эпимеризацию оксипролина и диаминонимелата. Последний фермент, как точно известно, участвует в биосинтезе L-лизина. Кроме того, в обмене пролина ж аланина у некоторых организмов участвуют D-формы, а не L-изомеры. Метаболическая роль других ферментов не столь ясна мон но думать, что они участвуют в синтезе D-аминокислот, используемых для построения клеточных оболочек. [c.446]

    Гидролиз белков кислотой обычно сопровождается разрушением (в результате окисления) большей части триптофана, окислением цистеина в цистин и некоторым распадом серина и треонина. Щелочной гидролиз имеет то преимущество перед кислотным, что триптофан в этих условиях более стабилен. Однако при щелочном гидролизе имеет место интенсивный распад серина, треонина, цистина, цистеина и аргинина. Кроме того, при щелочном гидролизе наблюдается рацемизация природных аминокислот. Гидролиз белка как кислотой, так и щелочью сопровождается дезамидированием глутамина и аспарагина. Эти амиды аминокислот и триптофан можно выделить из гидролизатов, полученных при помощи протеолитических ферментов. Однако ферментативный метод также страдает определенными недостатками в частности, гидролиз может быть неполным и сам фермент может распадаться с освобождением аминокислот. Выделение аминокислот из белков и получение их с количественным выходом представляет очень сложную задачу, которой занимались многие исследователи. Эта обширная область всесторонне рассмотрена в монографии Блока и Боллинг [98]. [c.24]

    Эта реакция не пригодна для отщепления С-концевых остатков пролина, так как они не образуют тиогидантоин, остатков аспарагиновой и глутаминовой кислот, которые образуют циклические ангидриды, а не тиогидантоины (аспарагин и глутамин, наоборот, дают тиогидантоины [301]), а также остатков серина, треонина, цистина, аргинина и лизина [19, 301], которые неустойчивы при циклизации или регенерации аминокислоты из тиогидантоинового производного. Таким образом, этот метод находит весьма ограниченное применение для прямого определения строения пептидов и белков. Для определения С-концевого остатка по разности [107] реакция может оказаться более полезной, но ее все же нельзя использовать для определения аспарагиновой и глутаминовой кислот и пролина. Однако путем микробиологического анализа [107], специфичного для остатков /-аминокислот, эти аминокислоты могут быть определены по потере оптической активности на 50% вследствие рацемизации в том случае, когда они являются С-концевыми. [c.247]


    Аминокислотный состав П. определяют после их гидролиза (кипячение в 6 и. НС1 в течение 20 ч) до составляющих аминокислот, к-рыс анализируют хромато-графич. методом на сульфокатионитах с автоматич. фотометрироваиием окрагиенных продуктов их взаимодействия с нингидрином. Для определения содержания триптофана применяют щелочной гидролиз пептидов (кипячение в 5 н. NaOH в течение 20 ч), т. к. кислотный гидролиз приводит к разрушению триптофана, а также частично серина и треонина. Глутаминовая к-та при гидролизе подвергается значительной рацемизации. Полиаминокислоты с объемистыми алкильными боковыми группами (валин, изовалин, изолейцин, лейцин) гидролизуются значительно медленнее остальных. Гидролиз П. до аминокислот моишо проводить п при помощи ферментов (трипсин, эрепсин). [c.15]

    Для полного гидролиза белков можно использовать сильную кислоту, сильное основание или специфические катализаторы — протеолитические ферменты. Наиболее часто используется для этой цели сильная кислота. Обычная методика гидролиза состоит в кипячении белка с 6 н. НС1 в запаянной ампуле (из которой предварительно откачивают воздух) при 110° в течение 12—96 час. В этих условиях пептидные связи гидролизуются с количественным выходом (для полного освобождения валина, лейцина и изолейцина требуется сравнительно большое время) и в результате гидролиза образуются гидрохлориды аминокислот. При нагревании с минеральными кислотами триптофан полностью распадается, а оксиаминокислоты серин и треонин подвергаются частичному разрушению. Эти потери определенным образом учитываются. Рацемизации аминокислот при кислотном гидролизе не происходит. [c.57]

    Для гидролиза белков до составляющих их аминокислот обычно используют хлороводородную кислоту (бМ, 24 ч, 120°С, эвакуированные запаянные ампулы). Однако этот метод не лищеи побочных реакций. Из генетически кодированных аминокислот интенсивно распадается триптофан, в то время как выходы серина и треонина составляют только 90—95%. Может происходить также хлорирование тирозина и образование орнитина из аргинина. Нередко метионин частично превращается в соответствующий сульфоксид, а цистеин полностью окисляется в цистин. Глутамин и аспарагин, естественно, гидролизуются до глутаминовой и аспарагиновой кислот. Использование п-толуолсульфокислоты может повысить выход триптофана [11], однако эту аминокислоту обычно определяют после гидролиза с помощью гидроксида бария. С другой стороны, щелочной гидролиз, помимо того, что вызывает рацемизацию, приводит к больщим потерям серина, треонина, цистеина и аргинина. [c.231]

    Азидный метод и в настоящее время имеет большое практическое значение благодаря ряду преимуществ это малая степень рацемизации, возможность введения в реакцию серина и треонина без защиты гидроксильной функции, а также разнообразные возможности, открываемые применением N-защищенных гидразидов. [c.141]

    Очень интересен также большой круг работ но изучению стереохимии и реакционной способности аминокислот и их комплексов с аналогами пиридоксаля и ионами металлов, проведенный В. М. Беликовым и 10. Н. Белоконем [68—70], Они использовали принцип имитации природных ферментов для получения реагентов, способных осуществлять асимметрический синтез с высокими химическими и оптическими выходами. Эти реагенты дают возможность проводить в одну стадию следующие реакции синтез -окси-а-аминокислот, например, Ь-треонина и Ь-серина из глицина, уксусного и муравьиного альдегидов. Авторами было показано также, что каталитическая рацемизация по эффективности равна эффективности действия природных рацемаз. Это позволяет проводить реакцию в нейтральной среде при низких температурах. [c.97]

    Азидный метод особенно ценен тем, что в общем случае он свободен от рацемизации при проведении реакции только в мягких щелочных условиях, а также поскольку количество защитных групп в полифункциональных боковых радикалах сведено к минимуму, Гидроксигруппы (серина, треонина и тирозина) и боковые цепи (аспарагиновая и глутаминовая кислоты), а также концевые карбоксигруппы аминокомпоненты в процессе пептидного синтеза, проводимого в частично водной среде, могут оставаться незащищенными. [c.402]

    Для демонстрации реакций рацемизации, элиминирования и конденсации были проведены аналогичные модельные эксперименты. Тип реакции, протекающей в модельной системе, определяется экспериментальными условиями и природой субстратов. Так, реакции трансаминирования, приведенной на схеме (94), благоприятствуют пониженные значения pH (pH 5), а рацемизации— повышенные (pH 10). Использование в качестве аминокислоты серина, содержащего в р-положении уходящую группу, в присутствии соответствующего нуклеофила, такого как индол, приводит к неферментативному превращению серина в триптофан схема (96) . [c.639]

    Реакция протекает с выделением воды и может быть осуществлена простым сплавлением вводимых в реакцию компонентов [243, 730, 1227, 2062]. Если сплавление, как это делалось ранее, проводить при температуре около 180°, то реакция почти всегда сопровождается рацемизацией [1227, 2060]. Рацемизации можно избежать, если поддерживать температуру реакции ниже 150° [730, 2060]. Для того чтобы устранить возможность перегревов при сплавлении, было предложено проводить реакцию в высококипящих растворителях диоксане [2064], п-цимоле [1601], ледяной уксусной кислоте [2423], ксилоле [2314] и пиридине [1241, 2262]. Однако некоторые аминокислоты, особенно бифункциональные, рацемизуются и в этих условиях [1241]. Следует отметить, что все эти способы неприменимы для получения фталиль-ных производных триптофана, тирозина, серина и таурина [242, 2064]. [c.36]


    Еще во времена Пастера было известно, что белки обладают оптической активностью. Впоследствии было установлено, что оптическая активность белков является следствием оптической активности входящих в их состав аминокислот. Далее, требовал решения вопрос, встречаются ли в белках только оптически чистые аминокислоты или могут встречаться также и частично или полностью рацемизованные. Э. Фишер впервые постулировал, что в белках аминокислоты встречаются только в оптически чистом виде. Противоречащие этому представлению факты, например выделение рацемического серина из продуктов гидролиза белков, Фишер объяснил рацемизацией, наступающей в процессе гидролиза белка и выделения аминокислот. Этот постулат в дальнейшем получил полное подтверждение. [c.587]

    Бактерии обычно используют D-аминокислоты более эффективно, чем высшие животные. Это и не удивительно, так как D-аминокислоты входят в состав клеток бактерий (стр. 67). Кроме того, бактерии значительно легче, чем высшие организмы, приспосабливаются к особым условиям питания. Некоторые бактерии могут использовать D-изомеры аминокислот непосредственно, другие обладают ферментными системами, катализирующими инверсию D-аминокислот путем рацемизации, окисления и реаминирования и, возможно, другими путями. Ценный обзор, посвященный использованию D-аминокислот бактериями и другими организмами, составлен Райдоном [159]. Автор сообщает о 26 видах бактерий, использующих по крайней мере одну из 13 D-аминокислот. Наиболее часто используются D-изомеры валина, аланина, серина, глутаминовой кислоты. [c.138]

    Некоторые из таких механизмов изображены на фиг. 72 (для иллюстрации взят конкретный пример — реакции с участием серина). Предполагается, что рацемизация, трансаминирование и дегидратация серина включают ионизацию протона, связанного с а-углеродом аминокислотной части колт-плекса шиффова основания (фиг. 72, II), что дает комплекс продукта перегруппировки (III). Присоединение протона по тому н<е положению этого оптически неактивного промежуточного продукта с последующим гидролизом приводит к реакции рацемизации (фиг. 72, путь 1). Присоединение этого протона к карбонильному атому углерода с последующим гидролизом дает продукты трансаминирования, пиридоксамин и кетокислоту (фиг. 72, путь 2). Полная реакция трансаминирования завершается обращением этого процесса — взаимодействием на начальной стадии пиридоксамииа и второй кетокислоты, как показано уравнением (VIII.23). В результате этой реакции регенерируется пиридоксаль и происходит превращение кетокислоты в аминокислоту. Наконец, неподеленная пара электронов может быть использована для удаления гидроксильного иона из соединения III, что дает соединение 1Л" (фиг. 72, путь 3). Гидролиз комплекса такого шиффова основания приводит к а-аминакриловой кислоте, которая самопроизвольно гидролизуется до пирувата. Подобные механизмы присущи и другим реакциям с участием пиридоксальфосфата. [c.221]

    По данным Шнабеля и Цана [1946], гидразинолиз метилового эфира карбобензокси-ь-серина часто сопровождается рацемизацией, даже если гидразингидрат взят в недостатке по отношению [c.273]

    Неустойчивость в щелочной среде пептидной связи серил— аминокислота является причиной низких выходов нужного продукта реакции при щелочном гидролизе эфиров серилпептидов [894, 949, 2637]. Шнабель и Цан [1946] указывали, что в этих условиях возможна, кроме того, частичная рацемизация. Так, остаток серина в СЬо-в-8ег-01у-ь-А1а-0Е1 рацемизуется в водно-метанольном растворе при добавлении триэтиламина [1941]. Гуттманн и Буассона [894] нашли, что при декарбобензоксилировании действием бромистого водорода в ледяной уксусной кислоте в обычных условиях алифатические гидроксильные группы полностью ацетилируются в тех же условиях фенольные гидроксилы не затрагиваются (ср. [1616а, 1951]). 0-Ацетилиро-вание можно предотвратить добавлением 30% воды к раствору бромистого водорода в ледяной уксусной кислоте лучше, однако, проводить реакцию в трифторуксусной кислоте или диэтилфосфите [894, 895]. Диоксан также применялся в качестве растворителя для гидроброминолиза. [c.275]

    Этим объясняется, в частности, часто наблюдаемая рацемизация пептидов, содержащих остатки серина или 5-бензилцистеи-на, в ходе щелочного гидролиза или гидразинолиза ([44, 1491, 1946] ср. [268, 2497]). Большая склонность к рацемизации, проявляемая нитроаргинином [1023, 2019] и тирозином [1079, 1992], по-видимому, связана с индуктивным эффектом со-групп. Эта гипотеза находит подтверждение в том факте, что рацемизация наблюдается даже тогда, когда образование азлактонов мало- [c.406]

    Другая трудность — и ее следует считать основной — это миграция биомолекул, особенно миграция из более молодых в более древние пласты [1056]. Растворимое органическое вещество может двигаться по порам и трещинам. Следовательно, оно не всегда является сингенетическим, и присутствие биологических маркеров вводит в заблуждение. О реальности этой опасности овидетельствует наличие некоторых аминокислот, например серина, в очень древних осадках, несмотря яа его хорошо известную химическую нестабильность [3, 6, 797, 1069]. Более того, за длительные периоды, о которых мы говорим, аминокислоты должны были подвергнуться рацемизации, но некоторые из них все еще оптячесюи активны [6, 796, 798, 1071]. [c.240]


Смотреть страницы где упоминается термин Серин рацемизация: [c.471]    [c.109]    [c.133]    [c.98]    [c.181]    [c.241]    [c.38]    [c.78]    [c.275]    [c.172]    [c.36]    [c.38]    [c.78]    [c.275]    [c.240]    [c.319]    [c.103]    [c.14]    [c.17]    [c.37]   
Основы биологической химии (1970) -- [ c.446 ]




ПОИСК





Смотрите так же термины и статьи:

Рацемизация

Серин

Серини



© 2024 chem21.info Реклама на сайте