Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращаемые системы и растворители

    Удобным и широко применяемым способом контроля за реакцией при периодической полимеризации в больших масштабах является проведение процесса в хорошо перемешиваемой системе, содержащей растворитель, не смешивающийся с мономером и полимером (обычно воду). При таких условиях жидкий мономер разбивается на маленькие капельки. Энергичное перемешивание часто в присутствии соответствующих диспергирующих веществ препятствует соединению капель по мере того, как они превращаются в шарики полимера. Механизм полимеризации в этом случае, по-видимому, идентичен механизму простой реакции, протекающей в массе мономера, но продукт реакции получается в более удобной форме, а наличие турбулентной системы и большого количества воды облегчает контроль теплового режима [70]. [c.119]


    При больших соотношениях объемов избирательного растворителя и масла объем экстрактного раствора возрастает по достижении определенного соотношения масло полностью растворяется в избирательном растворителе и система из двух жидких фаз превращается в однофазную. [c.225]

    Более подробный анализ полученных результатов и дополнительные специальные эксперименты позволили расширить представления о механизме коллоидно-химических превращений в рассматриваемых системах. Было отмечено, что в непосредственной взаимосвязи с условиями выделения находятся выход и реакционная способность асфальтеновых концентратов. Так, осадки, выделенные при недостатке растворителя в системе, превращаются из светло-коричневых в бурые, а затем в черные. В то же время концентраты асфальтенов, полученные при оптимальном соотношении растворителя [c.126]

    Частный случай системы с образованием трех фаз —растворы некоторых солей в воде (или в другом растворителе). Однако обычно температура плавления соли намного выше температуры плавления растворителя, иногда выше его температуры кипения и даже критической. Поэтому правая часть ветви (рис. У.ЗЗ), проходящая вблизи оси ординат, соответствующей компоненту В на практике не реализуется. Кривая 5с обычно называется кривой растворимости она характеризует процесс выпадения кристаллов вещества В, т. е. соли. Справа от зс располагается область составов пересыщенных растворов, которые легко превращаются в гетерогенную смесь, состоящую из насыщенного раствора и кристаллов соли. Эвтектика, образующаяся в водных растворах солей называется криогидратом. Криогидрат — это тонкая смесь льда и кристалликов соли. [c.309]

    Явление несовместимости наблюдается, когда достаточно разбавленные растворы различных полимеров в одном и том же растворителе не смешиваются, а разделяются на две фазы. При уменьшении концентрации полимера или достаточном повышении температуры двухфазная система превращается в однофазную. Экспериментально несовместимость полимерных систем определяют с помощью спинодали — кривой, разделяющей нестабильную и мета- [c.46]

    Локализованная неподеленная пара на атоме азота в нефтяных азотсодержащих соединениях дала возможность их использования в реакционно-активных каталитических композициях. На основе комплексов кобальта, железа и нефтяных азотсодержащих соединений получены катализаторы нейтрализации оксидов азота в промышленных и отходящих газах с целью защиты окружающей среды от загрязнения. Для получения активных каталитических форм комплексы получают на носителе — цеолитах, у-АЬОз и силикагелях, пропитывая последние хлороформенным раствором азотсодержащих концентратов. Затем, после отгонки растворителя носитель обрабатывают водным раствором хлорида кобальта и железа. При контакте с такими каталитическими системами газовой смеси, состоящей из 0,13 % N0-I-ЫОт и эквимо-лярного количества аммиака, очищенная смесь содержит только 0,032 % оксидов азота, что соответствует 76%-ой степени их нейтрализации. Большая часть оксидов в этом процессе превращается в азот и воду. Нейтральные и основные азотсодержащие соединения близки по эффективности. [c.144]


    При термолизе ТНО имеют место фазовые превращения групповых компонентов. Так, при осуществлении процессов термодеструкции с образованием кокса в коксующейся системе происходит несколько фазовых переходов первый связан с образованием и выделением из раствора фазы асфальтенов, а следующий - с зарождением и осаждением не растворимых в ароматических растворителях фазы карбенов, которые затем превращаются в карбоиды и конечный твердый продукт - кокс. [c.367]

    При ступенчатой полимеризации и поликонденсации механизм каждой отдельной стадии обычно такой же, как и в случае низкомолекулярных соединений. Все находящиеся в реакционной смеси молекулы способны реагировать в любой момент времени. Таким образом, первоначально мономеры превращаются в олигомеры, а затем, после того как весь мономер израсходован, олигомеры реагируют друг с другом, образуя полимеры с большей молекулярной массой, и т. д. Для получения полимера с высокой молекулярной массой необходимо, чтобы все элементарные реакции проходили с высокими выходами. Это означает, что все побочные реакции должны быть исключены, мономеры (а при проведении процесса в растворе и растворители) должны быть тщательно очищены. Ступенчатая полимеризация и поликонденсация отличаются от цепной полимеризации несколькими особенностями (а) рост макромолекулы происходит при взаимодействии любых двух находящихся в системе частиц (б) скорость полимеризации максимальна в начале процесса и непрерывно убывает в ходе реакции (в) концентрация мономера быстро уменьшается еще до того, как в системе появится сколько-нибудь заметное количество полимера с высокой молекулярной массой (г) полимеры с высокой молекулярной массой образуются лишь при очень высокой степени конверсии. [c.309]

    Например,- полифосфаты при растворении распадаются на мономерные катионы и высокомолекулярные анионы, которые, гидролизуясь, расщепляются. При достижении высокой концентрации раствора возникают ассоциаты высокомолекулярных анионных частиц, находящихся в равновесии с мономерами (катионными и анионными) и полимерными анионами. Посредством водородных связей эти частицы взаимодействуют с растворителем. В результате возникают вязкие метастабильные растворы, занимающие промежуточное положение между истинными и коллоидными. Вследствие изменения pH, концентрации (сушка) или воздействия температуры такие растворы-связки превращаются сначала в коллоидные — происходит выделение цементирующей фазы в аморфном состоянии. Участие этой фазы в следующей ступени межзерновой конденсации приводит к отвердеванию. Движущей силой процесса межзерновой конденсации является избыточная поверхностная энергия цементирующей фазы, обладающей высокой удельной поверхностью. Способствует межзерновой конденсации метастабильность аморфного состояния. Обычно конденсация на первом этапе реализуется путем поликонденсации. В ряде случаев образование коллоидных частиц не происходит, и система при изменении условий стеклуется. Таким образом, отвердевание связок может заканчиваться стеклованием. [c.11]

    Образование ионоз по реакции (7.22) подтверждается тем, что электронодонорные группы в ароматическом кольце анилина и электронодонорные заместители в перекиси бензоила увеличивают скорость реакции. Показано, что соединение I реагирует по двум конкурирующим направлениям, одно из которых приводит к образованию свободных радикалов, другое — нет. Это определяется тем, что эффективность образования радикалов снижена (25% и менее) н зависит от природы применяемого растворителя. После гидролиза катион HI, как правило, всегда превращается в формальдегид и метиланилин, что и наблюдалось в действительности. Очевидно, по реакции (7.23) должен выделяться только бензоат-радикал, который может инициировать полимеризацию, поскольку в полимерах, полученных в таких системах, не было найдено азота. Радикал II, скорее всего, реагирует дальше и разрушается прежде, чем стать свободным. [c.97]

    Процесс получения новых носителей включал ряд операций осаждения и гелеобразования, которые широко применимы к оксидной системе или системе смешанных оксидов. В процессе золь — гель [23] коллоидальный золь оксидов или гидроксидов металлов превращается в полутвердый гель удалением воды, нейтрализацией основанием или экстракцией кислого компонента растворителем. Затем гель сушат и прокаливают с получением оксида металла. На стадии гелеобразования определяется конечная поверхность, распределение пор по радиусам и структура. В последние годы активно исследуется применимость технологии золь — гель для получения оксидов металлов [24, 35], используемых в топливных элементах (стержнях) или других ядерных материалах. В результате этой работы в настоящее время возможно изготовление оксидов алюминия, титана, циркония, хрома, железа, редкоземельных элементов и их смесей с хорошо контролируемыми физическими свойствами. [c.52]


    Вопрос о переходе жидкая струя — волокно в условиях продольного течения теоретически и экспериментально рассмотрен Френкелем . Струя раствора полимера подвергается действию продольного (растягивающего) гидродинамического поля. При этом происходит ориентационное взаимодействие макромолекул, которое в ряде случаев (по-видимому, особенно для систем, находящихся вблизи области разделения на фазы) приводит к вытеснению растворителя и фазовому переходу в системе. В результате, жидкая нить превращается в волокно. [c.249]

    Большинство методов для специфического определения третичных аминов основано на ацетплировании образца и последующем титровании ненрореагировавшего третичного амина. В условиях данного метода аммиак, первичные и вторичные амины превращаются в амиды, основные свойства у которых выражены значительно слабее, чем у третичных аминов. Методы этого типа зависят от возможности дифференцировать третичные амины и образующиеся амиды поэтому успех метода будет обеспечивать дифференцирующая способность выбранной системы растворителей. По этой причине кислотные растворители, подобные уксусной кислоте, можно. использовать не во всех случаях, так как они повышают основность амидов [c.58]

    В качестве бинарных фаз в этой работе использовали следующие системы растворителей 1) гексан—ацетонитрил, 2) изооктан—диметилформамид (ДМФА), содержащий 10% воды, 3) изооктан—диметилсульфоксид (ДМСО), содержащий 10% воды, 4) гептан—этанол, содержащий 10% воды, 5) изооктан—ацетон, содержащий 20% воды, 6) бензол—метанол, содержащий 20% воды, 7) хлороформ—метанол, содержащий 40% воды. В последних двух системах неполярный слой находился внизу и -величина определялась как фракционная доля вещества, оставшаяся в неполярном слое. Для анализа использовали колонки с диэтиленгликольсукцинатом, силиконовым маслом 550 и ЗЕ—30 при температурах 90—240° С. Погрешность определения р-ве-личины составляла около 0,02 единицы. В пределах значения р-величины О—0,10 и 0,90—1,00 точность определения была выше (погрешность 0,01) за счет использования неравных объемов (см. главу II). Прочерк в таблице означает, что данное соединение перекрывается пиком одного из растворителей. При определении р-величины для кислот использовали следующий прием после установления равновесия фазы разделяли и кислоты превращали в метиловые эфиры с помощью диазометана, а затем в виде эфиров определяли хроматографически. [c.70]

    П. растворимы в крезоле, муравьиной и серной к-тах, диметилформамиде, метилпирролидоне, диметилацетамиде с добавкой Li l. Алкилирование П. по атому азота и частично в углеводородный радикал снижает их темп-ру плавления, повышает термостойкость и превращает в продукты, растворимые в обычных органических растворителях. В системе растворитель — полимочевина существует сильное межмолекулярное взаимодействие. Поэтому при разбавлении растворов П. их вязкость не уменьшается, а увеличивается. П. обладают высокой водостойкостью. Водопоглощение П. колеблется в пределах 0,05—1,70% за 24 ч. Механические и электрические свойства П. приведены в таблице. [c.506]

    Все лиганды этого типа могут иметь несколько основных атомов, расположение которых благоприятно для сольватации щелочного М + или щелочноземельного катиона М 2 +. Такие соединения - твердые вещества, так что необходимо рассмотреть сольватацию лигандами указанного типа в бинарных системах растворителей с инертным компонентом. Простейший пример - пиранозы с тремя соседними гидро-ксильными группами в аксиальном, экваториальном и аксимальном положениях, представляющие собой небольшие циклические соединения, в комплексах с которыми ион металла находится над плоскостью кольца. Более сложный случай - природные или искусственные мак-роциклические соединения, способные связываться с центральным атомом (М + или М 2 +) несколькими своими основными атомами. При этом ион металла оказывается в органической оболочке и фактически превращается в большой органический катион. Наиболее важные примеры приведены в табл. 2.26 (в последнее время по этому вопросу появился ряд обзоров [157, 236а, 609, 667, 803, 8]). [c.344]

    Как ВИДНО, при равенстве параметров растворимости компонентов уравнение (1.1) превращается в уравнение (1.2) и система превращается в идеальную. Неравенство молекулярных полей растворителя и растворимого вещества всегда ограничивает растворение. Не идеальность образующихся растворов определяется различием молекулярных полей компонентов, выражаемых в уравнении (1.1) разностью параметров растворилюсти. Как легко заметить, для конкретного растворяемого вещества эта разность с изменением значений параметров растворимостей растворителя меняет знак, из чего следует, что растворимость вещества с изменением интенсивности молекулярного поля растворителя должна проходить через максимум. Такая зависимость, названная правилом Семенченко /12/, была подтверждена для углеводородов на примере растворимости парафина и нафталина /15/ и показана на рис. 1.1 [c.22]

    Студнеобразные массы золей получили название студней или гелей. Процесс желатинирования является одним из видов коагуляции. Однако от обычной коагуляции он отличается тем, что не образуется осадка частиц дисперсной фазы, а вся масса золя, связывая растворитель, переходит в своеобразное полужидкое состояние. К таким системам можно отнести агар-агар, желатин, крахмал. При повышении температуры они могут снова перейти в золи. Некоторые гели обладают способностью обратимо разжижаться при механических воздействиях на них (встряхивании, перемешивании, вибрировании и т. д.). При встряхивании такой гель снова превращается в золь, последний в спокойном состоянии снова переходит в гель. Такие превращения могут повторяться последовательно много раз. Это явление получило название ттсотротш. [c.58]

    Для осаждения лиофильных систем требуются очень большие количества электролитов. Коагуляцию, наступающую при добавлении больших количеств электролитов или дегидратирующих веществ в гидрофильную систему, называют высаливанием. При высаливании, а также при испарении растворителя или увеличении концентрации лиофильной системы болыиин-ство нз них превращается в студнеобразные массы — гели. Влияние температуры на гелеобразование может быть различным в некоторых случаях с понижением температуры образуется гель, в других случаях гель разрушается. При выпаривании или охлаждении лиофобных золей получается мелкокристаллическое вещество (в отличие от гелей). [c.424]

    Система азобензол — гидразобензол является одной нз ие-скольких органических редокс-пар, которые на ртутном капаю щем электроде [151] проявляют обратимость или очень близки к этому, в неводных растворителях типа диметилформамида азобензолы восстанавливаются в две одноэлектронные стадии иа первой стадии образуется аиион-радикал, на второй — дк-анион. Диаиион легко протоиируется и далее превращается в арилгидразин [152] (уравнение 8.39). [c.312]

    Большим преимуществом метода спиртового обмена являются мягкие условия синтеза, препятствующие протеканию побочных процессов. Это особенно важно для спиртов, склонных к реакциям с хлористым водородом. Определенным преимуществом является и простота физических методов удаления спиртов. Если спирт R ОН имеет значительно более высокую температуру кипения по сравнению с ИОН, синтез можно провести с затратами минимального теоретического количества R OH, что важно в тех случаях, когда спирт R OH дорог. Несомненно, лучше использовать небольшой избыток (около 10%) спирта R OH, иначе последняя стадия обмена будет протекать очень медленно. Для использования в качестве инертных разбавителей имеется широкий выбор растворителей (бензол, толуол, четыреххлористый углерод, цикло-гексан и т. д.). Часто спирт R OH удается осушить азеотропной отгонкой с использованием разбавителя (например, бензола) в качестве третьего компонента. Если спирт R OH имеет слишком высокую температуру кипения для образования тройной азеотропной смеси с водой и бензолом, для осушения системы можно добавлять другой спирт ROH с низкой температурой кипения. Например, берут требуемое количество спирта R OH с бензолом и небольшое количество спирта ROH (например, EtOH) и осушают систему перегонкой при минимальной температуре кипения тройного азеотропа бензол — этанол — вода. Большую часть этанола удаляют в виде бинарного азеотропа с бензолом, после чего в раствор вводят этоксид металла M(OEt) , который превращают в M(OR ) отгонкой азеотропа бензол — этанол. [c.239]

    Различие между натрием и литием особенно явно проявляется для концентрированных растворов силикатов лптия с молярными соотношениями Si02 Li20 от 4 1 до 15 1 и выше. Такие растворы силиката лития прозрачны и вполне устойчивы при 25°С, хотя большинство аналогичных составов силиката натрия, как обсуждалось выше, либо превращается в гель, лпбо кристаллизуется. К тому же свойства концентрированных золей коллоидного кремнезема в литиевых системах заметно отличаются от свойств золей, стабилизированных щелочью NaOH. Особенно это наглядно проявляется на примере гораздо большей совместимости золей первого типа с органическими растворителями, способными смешиваться с водой. [c.200]

    Совместно с Ельяшевич [239] нам удалось сформулировать условия возникновения порядка в системах полимер — растворитель в цепях с ограниченной вращательной подвижностью, характеризуемой параметром Флори /. Хотя речь идет о давней работе и мы пользовались еще более давней теорией Флори, основанной на выражении для энергии Гиббса системы полужесткий полимер — растворитель, включающей параметр гибкости / и основанной на решеточной модели, мы полагаем, что этот подход поучителен и сохранил значимость до настоящего времени, хотя многие детали теории изменились. К тому же цитированные работы были в свое время восприняты как нетипичный курьез и сейчас полузабыты, тогда как за истекшее время выяснилось, что многие полужесткоцепные полимеры, и в первую очередь биополимеры, способны к образованию бинарных упорядоченных форм, и простое сопоставление энергий Гиббса позволяет выяснить, которое из состояний предпочтительнее аморфное, мезоморфное или кристаллическое. Приводимый ниже анализ имеет значение и для гл. XV, ибо лишь сравнительно недавно способность некоторых лиотропных полимерных жидких кристаллов превращаться в студневидные или жесткие кристаллосольваты была переоткрыта . [c.340]

    I и 5 I 1 соответственно, а в качестве реакционной среды используются ацетонитрил и метанол. В системе I первое идентифицируемое промежуточное соединение представляет собой адамантаноподобный комплекс [Ре4 (5РЬ) ю] , который в обоих растворителях взаимодействует с серой по принципу все или ничего с образованием I. Других промежуточных продуктов в этой системе не обнаружено. В системе II вначале образуется тетраэдрический комплекс [Ре(5РЬ)4] , который затем, реагируя с серой в среде ацетонитрила, превращается в двухъядерный кластер [РегЗз(ЗРИ)4] Таким образом, система II представляет собой первый пример процесса, приводящего к образованию четырехъядерного кластера через промежуточные одно- и двухъядерные комплексы. В среде метанола образование I из исходных реагентов протекает количественно, что было показано спектрофотометрическими измерениями [14]. [c.199]

    Примеси в минералах разделяются на структурные и механические. Структурные примеси входят в кристаллическую решетку, размеры их отдельных частиц менее 1 нм. По своей физической природе такие примеси превращаются в раствор. Растворителем служит кристалл — твердое тело, а растворимым телом — структурная примесь. Поэтому подобные растворы получили название твердых. Примеси относятся к механическим в том случае, когда частицы в растворе имеют диаметр более 10 нм их уже можно обнаружить при помощи ультрамикроскопа. При несколько большем размере в прозрачных средах при косом освещении наблюдается рассеивание света — явление Тиндаля. Такая система уже неоднородная, гетерогенная. Она называется коллоидом, растворитель в ней — дисперсной средой, а растворенное тело — дисперсной фазой. В минералах дисперсная среда представляет собой кристалл, поэтому такие системы получили название кристаллозоли (аметист, синяя каменная соль и др.). Коллоидными системами считаются растворы только при степени дисперсности примесей до 100 нм (10 = см). [c.27]

    Анализ серных вулканизатов требует определения органической и элементной, свободной серы, а также серосодержащих ускорителей. Серная вулканизация каучуков общего назначения наиболее широко применяется в современной технологии. При этом происходят сложные физико-химические процессы, в результате которых молекулы каучука превращаются в трехмерную пространственную сетку за счет образования С—С-, moho-, ди- и полисульфидных связей. Эта сера называется органически связанной и не экстрагируется растворителями. Тип и число поперечных связей обусловлены природой вулканизующей системы [78] . [c.45]


Смотреть страницы где упоминается термин Превращаемые системы и растворители: [c.333]    [c.73]    [c.300]    [c.229]    [c.199]    [c.114]    [c.157]    [c.79]    [c.447]    [c.466]    [c.518]    [c.212]    [c.297]    [c.487]    [c.253]    [c.195]    [c.727]    [c.233]    [c.99]   
Лакокрасочные покрытия (1968) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Что во что превращается



© 2025 chem21.info Реклама на сайте