Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинец скорость

    Для жидких сплавов висмут — кадмий, висмут — олово, кадмий — свинец, свинец — олово, кадмий — олово и висмут — свинец скорость ультразвука была исследована Ходовым [Л. 49 и 50]. Результаты его исследований графически приведены на рис. 1-23. Экспериментальные данные (отмеченные крестиками) показывают линейную зависимость скорости ультразвука от атомной концентрации компонентов в сплавах кадмий — олово, висмут — свинец и нелинейную во всех остальных. [c.70]


    Скорость коррозии зависит от различных условий. Большую роль играет реакция среды, ее рП (рис. 112). У таких металлов, как золото и платина, реакция среды не влияет на коррозию эти металлы стойки против коррозии в различных средах. У амфотерных металлов (цинк, алюминий, свинец) скорость коррозии минимальна в нейтральной среде (pH = 7) и быстро возрастает при переходе как в кислую, так и щелочную среду. У железа и маг-ния наибольшая скорость коррозии наблюдается в кислой области. Аналогично и у никеля. [c.336]

    Свинец неустойчив в азотной и уксусной кислотах, так как нитраты и ацетаты свинца легко растворимы. Интенсивную коррозию свинца вызывают органические кислоты, образующиеся при микробиологическом распаде органических веществ в торфяных и болотистых грунтах, а также муравьиная и некоторые другие органические кислоты. В растворах кислот, реагирующих на свинец, скорость коррозии заметно увеличивается при наличии аэрации, т. е. доступа воздуха. [c.24]

    Единственно стойким металлом к действию хлорноватистой кислоты является титан и некоторые его сплавы удовлетворительно стоек свинец (скорость коррозии 0,35 мм/год). Стали всех марок нестойки в хлорноватистой кислоте, поэтому оборудование, трубопроводы и арматуру изготавливают из титана, фарфора, фторопласта или из стали, защищенной футеровкой, кислотостойкими плитками на кислотостойкой замазке. [c.163]

    Медь в растворах йода не применяют. Сплавы меди с никелем можно использовать в твердом кристаллическом йоде в исключительных случаях. Никель в растворах и парах иода также разрушается. Наиболее допустимой стойкостью обладает свинец, скорость коррозии которого в парах йода не превышает [c.559]

    Металлические пленки как твердые смазки применяются в узлах трения, работающих в вакууме при высоких нагрузках и малых скоростях относительного перемещения. В качестве твердых смазок используются мягкие металлы свинец, серебро, висмут,-золото, кадмий и т. п. [c.207]

    Помимо растворяющей способности и надлежащей скорости испарения, разбавитель красок должен обладать еще другими свойствами. Сюда относятся антиокислительная стабильность (с тем чтобы не портить цвета и запаха краски), а также отсутствие загрязнений, вызывающих коррозию, и реакционноспособных примесей, таких, как например некоторые сернистые соединения. Последнее требование ставится во всех случаях, когда краска содержит свинец и родственные ему металлы. Этим требованиям лучше всего удовлетворяют прямогонные дистилляты из пара- [c.561]

    Недостатки процесса более низкая скорость экстракции и более высокая коррозионная агрессивность рабочих сред. Большая часть оборудования изготовляется из легированных сталей. Для аппаратуры, работающей в среде ненасыщенной кислоты, используются свинец, монель-металл и графит. [c.726]


    Опытами на двигателях показано, что нагары, имеющие более низкую температуру воспламенения, вызывают более интенсивное калильное зажигание. Отмечено, что наличие свинца приводит к повышению температуры и скорости горения нагара. Одновременно свинец способствует более полному и быстрому сгоранию углерода. [c.83]

    Подсчитано, что если бы весь свинец оставался в двигателе, то камеры сгорания полностью заполнились бы свинцом и его соединениями уже через 40 ч работы. В действительности не все соединения свинца остаются в двигателе, основная часть их вследствие больших скоростей выпуска газов из цилиндров захватывается потоком и выносится из двигателя. Опыты показывают, что с отработавшими газами уносится из камер сгорания около 90% обш,его количества свинца, введенного с бензином. Но и остаюш,иеся 10% свинцовых соединений дают столь обильные отложения, что вызывают серьезные неполадки в работе двигателя. [c.164]

    Введение в жидкие висмут, свинец или ртуть небольших (обычно около 0,05% по массе) количеств ингибиторов — циркония или титана — суш,ественно (иногда в сотни раз) снижает скорость растворения в них железа и стали, что обусловлено образованием на поверхности защитных пленок нитридов и карбидов циркония и титана, затрудняющих выход атомов твердого металла в жидко-металлический раствор. Кроме того, присутствие этих ингибиторов замедляет кристаллизацию растворенного металла в условиях термического переноса массы и увеличивает пресыщение раствора в холодной зоне. [c.145]

    Характер развития атмосферной коррозии во времени у разных металлов заметно отличается вследствие неодинаковости защитных свойств образующихся продуктов коррозии. Свинец и алюминий образуют хорошую защитную пленку из продуктов коррозии, и зависимость величины коррозии от времени для этих металлов имеет вид затухающей логарифмической кривой (рис. 138). Защитные свойства продуктов коррозии меди, олова и особенно никеля несколько ниже. Скорость коррозии цинка по мере образования слоя продуктов коррозии сначала уменьшается во времени,. а затем остается постоянной. Для железа в [c.180]

    При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода иа этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, цинк, кадмий). [c.274]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]

    Наибольшее ускорение выжига кокса в начале регенерации наблюдается на образцах, содержащих хром. За первые 25 мин на образце катализатора, содержащем 0,8 вес. % металла, сгорает 84 вес. % отложенного кокса, в то время как на исходном катализаторе за это же время сгорает только 52 вес. % кокса. С уменьшением содержания хрома в образце скорость выжига кокса заметно снижается. На образцах, содержащих ванадий, медь, молибден, доля сгоревшего кокса в начальный момент времени также значительно выше, чем на исходном катализаторе, но несколько меньше, чем на образцах, содержащих хром. Так, при примерно таком же количестве металлов за первые 25 мин выгорает только 70—74% отложенного кокса. При добавлении железа, никеля и кобальта скорость регенерации исходного катализатора мало изменяется. Так, при содержании 0,8 вес. % железа за первые 25 мин сгорает только 66% отложенного кокса, а на образцах, содержащих 0,48— 0,50 вес. % никеля и кобальта, за то же время сгорает 55% кокса при регенерации исходного образца катализатора сгорает 52% кокса. Свинец не влияет на регенерацию катализатора. [c.166]

    Металлы, содержащиеся на поверхности катализатора, практически не влияют на скорость выжига коксовых отложений в диффузионной области и существенно ускоряют регенерацию катализатора в кинетической области. Исследованные нами металлы по степени убывания их воздействия на скорость окисления кокса в кинетической области располагаются в следующий ряд хром> >ванадий>литий>молибден, медь, натрий>железо>кобальт, никель>бериллий, магний, кальций, стронций>калий>цезий> >свинец. [c.180]

    Медь, кремнистые бронзы, свинец и олово стойки в растворах кислоты без доступа воздуха. Скорость коррозии их значительно увеличивается с повышением температуры, увеличением концентрации и степени аэрирования растворов. [c.848]

    В мерник для сырья загружают керосиновый раствор продукта, нагревают свинцовую баню до 370° 1, затем посредством подъемного механизма поднимают баню с таким расчетом, чтобы змеевик и сепаратор были погружены в расплавленный свинец. После этого включают вакуум-насос и, установив остаточное давление равным 20 мм рт. ст., приступают к разгонке, причем открывают кран сырьевого мерника с таким расчетом, чтобы скорость подачи керосинового раствора составила 10 мл в 1 мин. [c.201]


    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]

    Так, свинец, погруженный в серную кислоту, магний в воде или железо в ингибированной травильной кислоте будут называться пассивными по определению 2 — вследствие низких скоростей их коррозии, несмотря на значительную склонность к коррозии. Но по определению 1, эти металлы не являются пассивными, так как их коррозионные потенциалы относительно активны и поляризации не наблюдается, если эти металлы выступают как аноды в элементах. [c.71]

    Свинец также в среднем корродирует медленнее стали. В слабо аэрированных грунтах или грунтах с высоким содержанием органических кислот скорость коррозии свинца может значительно (в 4—6 раз) превышать среднее значение. В некоторых из этих грунтов наблюдалась перфорация образцов, чем и объясняется более высокая максимальная проницаемость по сравнению с усредненными значениями, представленными в табл. 9.1. [c.184]

    Никелированные металлические поверхности используются в качестве катализаторов реакций, поэтому осажденные слои могут достигать довольно большой толщины. При необходимости увеличить скорость нанесения никеля (а также для нанесения покрытий на стекло и пластмассы) в промышленные составы вводят специальные добавки. К металлам, на которые покрытия осаждают, относятся свинец, оловянный припой, кадмий, висмут, сурьма. [c.235]

    Свинец — амфотерный металл, поэтому корродирует в щелочах с умеренной или большой скоростью, в зависимости от аэрации, температуры и концентрации растворов. Так, он разрушается при комнатной температуре растворами гидроксида кальция, а также водами, находившимися в контакте со свежим портландцементом. [c.357]

    Свинец стоек в морской воде. Он устойчив и в пресных водах, однако из-за токсичности даже следовых количеств солей свинца применение свинца и его сплавов в контакте с мягкими питьевыми водами, газированными напитками и любыми пищевыми продуктами исключается. В аэрированной дистиллированной воде скорость коррозии свинца велика ( 9 г/м -сут — см. [1, стр. 210]) и увеличивается с ростом концентрации растворенного кислорода. В отсутствие растворенного кислорода скорость коррозии в водах или разбавленных кислотах ничтожно мала. [c.358]

    В некоторых грунтах (например, содержащих органические кислоты) скорость коррозии свинца может превышать скорость коррозии стали, однако в почвах с высоким содержанием сульфатов коррозия незначительна. Растворимые силикаты, которые присутствуют во многих грунтах и природных водах, также действуют как эффективные ингибиторы коррозии. Если свинец используют в условиях с периодическим колебанием температуры, то из-за высокого коэффициента расширения (30-10 /°С) металл может подвергаться межкристаллитному растрескиванию вследствие усталости или коррозионной усталости. [c.358]

    Магний корродирует в морской воде со скоростью 1,45 г/ м -сут). Каково значение скорости коррозии, выраженное в мм/год Если с такой же скоростью корродирует свинец, каково соответствующее значение в мм/год  [c.386]

    Один из наиболее интересных выводов, к которым приводит модель ключа и замка , объясняющая механизм ферментативного действия, заключается в том, что определенные молекулы способны ингибировать фермент. Допустим, что некоторая молекула способна притереться к активному центру фермента, но по какой-либо причине не обладает реакционной способностью. Если такие молекулы присутствуют в растворе наряду с субстратом, они конкурируют с ним за связывание с активными центрами. Это препятствует образованию необходимых фермент-субстратных комплексов и понижает скорость образования продукта. Металлы с высокой токсичностью, например свинец и ртуть, по-видимому, действуют как ингибиторы ферментов. Ионы тяжелых металлов особенно прочно связываются с серусодержащими группами белковых боковых цепей. В результате образования прочных комплексов с этими центрами белков они препятствуют нормальным реакциям ферментов. [c.454]

    Среди перечисленных ниже металлов выберите те, в присутствии примесей которых скорость электрохимической коррозии железа будет замедляться. Объясните, почему это происходит. Изобразите схемы соответствующих процессов. Металлы циик, медь, алюминий, свинец, серебро, марганец, магний. [c.174]

    Влияние концентрации растворенного кислорода на коррозию образцов из 181 металла и сплава в морской воде было исследовано в экспериментах, проведенных Строительной лабораторией ВМС США [132]. Был проведен линейный регрессионный анализ данных, полученных при экспозиции 12-мес на глубинах 1,5 760 и 1830 м (содержание кислорода 5,75, 0,4 и 1,35 мг/кг соответственно). Линейное возрастание скорости коррозии при повышении концентрации кислорода в морской воде наблюдалось для следующих металлов углеродистые и низколегированные стали, чугун, медные сплавы (за исключением Мунц-металла и марганцовистой латуни марки А), нержавеющая сталь 410, сплавы N1—200, Моннель 400, Инконель 600, Инконель. 750, №—ЗОМо—2Ре и свинец. Скорости коррозии многих других сплавов возрастали с температурой, но зависимость не была линейной. Многие сплавы не подвергались коррозии в течение года ни в одной из испытывавшихся партий образцов. К таким металлам относятся кремнистые чугуны, некоторые нержавеющие стали серии 18Сг—8М , некоторые сплавы систем N1—Сг—Ре и N1—Сг—Мо, титановые сплавы, ниобий и тантал. [c.176]

    Окисление трансформаторного масла можно ускор ить введением металлов или их соеди нени й, действующих как катализаторы. Особенно активны свинец, и медь, а из них более активен свинец. Скорость образования кислот в течение первого часа окисления в присутствии свинца как катализатора мала, но зателг она быстро возрастает. Разные. масла сильно отличаются по своей способности образо вать осадок. Бутков , основываясь на полученных им данных, предложил следующее окислительное испытание для трансформаторных масел 100 .w масла нагревают 70 час. до 120 в присутствии куска медной сетки (70 X 15 тп), пропуская кислород со скоростью 6—7 л в час. После этого. масло -помещают в гра--дуированный цил индр и определяют объем осадка. Определяют также кислотность и содержание смолы в масле. [c.979]

    В фосфорной кислоте, загрязненной фтористыми соединениями, коррозионно-стойкие стали сравнительно быстро разрушаются. Недостаточно стойки в этой кислоте никелевые сплавы. В таких кислотах можно применять свинец, скорость коррозии которого при комнатной температуре составляет 0,025 мм1год. [c.532]

    К металлам, стойким в растворах плавиковой кислоты до концентрации 60% при комнатной температуре, относится свинец, скорость коррозии которого не превышает 0,025 мм1год. [c.533]

    Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примесн в свинце (Си, 5п, Аз, Ре, В] и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии на поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозни свинца. [c.261]

    В растворах соляной кислоты при комнатной температуре свинец можно считатГ) стойким прн условии, что кон-цеит[)ация кислоты не превышает 10 /о. С увеличением кон-центрацни соляной кислоты и повышением температуры скорость коррозии свинца увеличивается. [c.263]

    В процессе крекинга тяжелого углеводородного сырья на катализаторе отлагаются металлы, которые могут влиять на закономерности окисления кокса в регенераторе. Детально это исследовано авторами работы [94]. Установлено, что при добавлении в катализатор различных металлов качественный характер регенерации катализатора не изменяется. Однако металлы, нанесенные на катализатор, интенсифицируют выжиг кокса в начальный период по сравнению со скоростью выжига исходного ка (нлизатора. Наибольшее ускорение наблюдается на образцах, содержащих хром. За первые 25 мин на образце катализатора, содержащем 0,8% (масс.) Сг, сгорает 84% отложенного кокса, в то время как на исходном катализаторе за это же время сгорает только 52% кокса. С уменьшением содержания хрома скорость выжига кокса заметно снижается. На образцах, содержащих ванадий, медь и молибден, доля сгоревшего кокса в начальный момент времени также значительно выше, чем на исходном катализаторе, но несколько меньше, чем на образцах, содержащих хром. Так, при примерно таком же содержании металлов за первые 25 мин выгорает только 70-74% отложенного кокса. При добавлении железа, никеля и кобальта скорость регенерации исходного катализатора мало изменяется. При содержании 0,8% (масс.) железа за первые 25 мин сгорает только 66% отложенного кокса, а на образцах, содержащих 0,48-0,50% (масс.) никеля и кобальта, за то же время сгорает 55% кокса при регенерации исходного образца катализатора сгорает 52% кокса. Свинец не влияет на регенерацию катализатора. [c.33]

    Для регулирования скорости и торможения разветвленных цепных реакций в реакционную смесь добавляют вещества, называемые замедлителями и ингибиторами обрывая цепи, они уменьшают скорость процесса. Таким образом ведет себя, например, тетраэти-ловый свинец, прибавляемый в небольших количествах к авиационным и автомобильным бензинам. Переходя вместе с бензином в парообразное состояние в камере двигателя, тетраэтилсвинец обрывает цепи при горении топлива. При хранении мономеров часто добавляют ингибиторы, чтобы предотвратить цепную реакцию самопроизвольной полимеризации. [c.357]

    Теплообменники этого типа состоят из плоских или цилиндрических змеевиков (аналогично витым), погруженных в сосуд с жидкой рабочей средой. Вследствие малой скорости омывания жидкостью и низкой теплоотдачи снаружи змеевика погружные теплообменники являются недостаточно эффективными аппаратами. Пх целесообразно использовать, когда жидкая рабочая среда находится в состоянии кипения или имеет механические включения, а также при необходимости применения поверхности нагрева из специальных материалов (свинец, керамика, ферро-силнд и др.), для которых форма змеевика наиболее приемлема. [c.140]

    Эффективным оказалась и частичная замена платины на другие металлы, например рений, иридий, кадмий, свинец, палладий. Такие полиметаллические катализаторы более стойки к спеканию, срок их службы значительно вьш1е. На этих катализаторах несколько снижается роль побочных реакций распада и наоборот увеличивается значение реакции дегидроциклизации парафинов. При работе на этих катализаторах понижается скорость закоксо-вывания, повышается продолжительность межрегенерационных пробегов. [c.244]

    За рубежом для улавливания аэрозольных часгиц большое распространение получили многослойные фильтры из стекловолокна фирм Сарториус и Ватман , керамики, фторопласта, полиамида, полисуль-фонов, полиакрилонитрила и других материалов [16]. Они практически полностью задерживают частицы с размерами от 0,1 до 0,2 мкм. В нашей стране для этих целей в основном применяются фильтры Петрянова (ФПП) из ультратонких волокон поливинилхлорида, устойчивые в агрессивных средах и хорошо растворяющиеся в органических растворителях [17]. Они гидрофобны, имеют малое сопротивление и даже при высоких скоростях фильтрации (более 1 м/с) улавливают 90% аэрозолей с размером частиц 0,3 мкм и вьш1е Кроме того, фильтры Петрянова позволяют эффективно извлекать аэрозоли металлов (бериллий, хром, алюминий, свинец и др.) 118]. Для улавливания свинца удобны также трубки с тенак-сом ОС 19 Высокая эффективность улавливания (даже в нанофаммо-вых количествах) характерна для пробоотборных устройств, рабочим элементом которых является стеклоткань, покрытая полиэтиленгликолем [20]. Ниже приведена методика отбора проб воздуха для определения концентраций бенз(а)пирена в атмосфере, в том числе на промышленных площадках и рабочих местах ]21 ] [c.171]

    Разработан также метод определения инертных форм металлов в воде (711. Их разделяют на три фракции, каждая из которых характеризуется скоростью диссоциации ионов металла, удерживаемых ионообменной колонкой умеренно лабильные, с низкой скоростью диссоциации и инертные Заметим, что анодную ИВА непосредственно можно использовать только для определения очень лабильных форм металлов. К ним, в частности, относится кадмий Свинец попадает в фуппу металлов, характеризующихся низкой скоростью диссотщации ионных образований, или инертных. На рис. 7.5 приведена схема для определения форм сущесгво-вания ионов металлов в природных водах с использованием нонообмен-ников [c.283]

    Потенциал, при котором наступает пассивность (так называемый потенциал пассивации), и глубина пассивации, т. е. степень уменьшения скорости растворения, зависят от свойств металла и электролита. Так, никель, железо и стали пассивируются быстро и глубоко в растворах щелочей и поэтому практически не растворяются в этих средах. Это явление широко используется на практике в качестве нерастворимых анодов в щелочных растворах применяют никель и сталь. Свинец быстро и глубоко пассивируется в сернокислых нейтральных и кислых растворах. В практических условиях свинец и его сплавы применяются в качестве нерастворимых анодов в растворах, содержащихЗОГ. [c.250]

    Из таблицы вытекает, что наиболее нежелательными являются элементы II группы (Аз, 5Ь и В1), которые распределяются по всем трем продуктам электролиза. Скорости разряда ионов Аз, 5Ь и В на катоде весьма малы, однако они попадают в катодный металл другим путем. Соединения этих элементов склонны к гидролизу, образуя гелеобразные взвеси, например 5Ь(ОН)з, В1(0Н)з,НАз02 ( плавучий шлам). Взвеси катафоретически переносятся к катоду и включаются в катодный осадок. Попадание этих примесей в катод следует исключить, так как даже незначительное количество сурьмы в катодной меди снижает ее пластичность, содержание 0,02% мышьяка уменьшает электропроводность меди на 15%. Лучшим методом борьбы является максимальное удаление этих примесей еще при огневом рафинировании. Включение примесей в катод несколько снижается при повышении кислотности электролита, препятствующей гидролизу солей этих элементов. Свинец и олово практически не растворяются и целиком поступают в шлам в виде РЬ504 и НаЗпОз. [c.308]

    Разряд ионов свинца из растворов двухвалентных его солей совершается с высокой скоростью значительные плотности тока достигаются при незначительных величинах поляризации (см. рис. 16, а). Столь малая поляризация при электролизе, наблюдаемая на аноде и атоде, облегчает электролитическое отделение свинца как от электроположительных, так и от электроотрицательных примесей (см. табл. 4). Электродный потенциал олова очень близок к потенциалу свинца, поэтому олово практически целиком переходит в раствор и попадает в катодный свинец. [c.262]

    Для того чтобы улучшить октановое число смеси углеводородов, к ней добавляют антидетонирующие присадки, т. е. вешества, помогающие управлять скоростью горения бензина. Для этой цели чаще всего используют такие соединения, как тетраэтилсвинец (СНзСН2)4РЬ или тетраметилсвинец (СНз)4 Ь. При содержании одного из соединений свинца в количестве 2-3 мл на 3,8 литра бензина его октановое число повышается на 10-15 единиц. Хотя алкильные соединения свинца несомненно эффективно улучшают рабочие характеристики бензинов, в настоящее время их применение резко сократилось из-за вреда, наносимого окружающей среде. Свинец-чрезвычайно токсичный металл имеются веские доказательства, что его выброс в атмосферу с выхлопными автомобильными газами создает общую угрозу здоровью. В качестве антидетонирующих присадок к бензинам испытывались многие другие вещества, однако ни одно из них не является одновременно эффективным и недорогим антидетонирующим агентом, безопасным в то же время для окружающей среды. В Соединенных Штатах, начиная с 1975 г., стали конструировать модели автомобилей, работающих на бензине без свинцовых присадок. Бензиновые смеси для таких автомобилей составляют из более высокоразветвленных, а также более ароматических компонентов, поскольку они характеризуются сравнительно высокими октановыми числами. [c.420]


Смотреть страницы где упоминается термин Свинец скорость: [c.505]    [c.402]    [c.168]    [c.148]   
Морская коррозия (1983) -- [ c.406 , c.409 ]

Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.25 , c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Свинец скорость коррозии

Свинец скорость окисления



© 2025 chem21.info Реклама на сайте