Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура изменение при фазовых переходах

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Изменение взаимного расположения частиц в пространстве под влиянием температуры называется фазовым переходом. Такая перестройка структуры полимера обусловливает скачкообразное изменение термодинамических параметров объема, внутренней энергии, энтальпии - и сопровождается поглощением или вьщелением тепла ( фазовые переходы первого рода ). [c.125]

    Фазовые превращения полимеров (фазовые переходы) - переходы полимера из одного фазового состояния в другое, происходящие при изменении температуры, давления или другого внешнего термодинамического фактора и сопровождающиеся изменением взаимного расположения элементов структур и скачкообразным изменением термодинамических и структурных характеристик полимерной системы. [c.407]

    До недавнего времени превращения энергии из одного вида в другой при разрушении полимерных тел рассматривали только в механическом аспекте [297, с. 291 ]. Между тем работа деформирования полимеров переходит не только в потенциальную упругую энергию, но и частично в энергию тепловую, химическую, поверхностную. При деформировании материала изменяется структура, часть работы деформирования тратится на структурные изменения, фазовые переходы первого и второго рода [3, с. 12]. Превращение части механической энергии при разрушении в химическую, тепловую [60, с. 18 182, с. 104 212, с. 412, 435] и другие виды свидетельствует о том, что наряду с упругими проявляются и неупругие свойства и что необходимо рассматривать соотношение потенциальной энергии взаимодействия элементов структуры и кинетической энергии теплового движения. [c.253]

    Появление дефектов в кристаллической решетке вызывает изменение ее структуры. Если изменение заканчивается образованием новой упорядоченной структуры, например образованием структур взаимодействия, то такие превращения рассматриваются как фазовые переходы второго рода. В отличие от фазовых переходов первого рода, которые сопровождаются скачкообразным изменением кристаллической структуры, для фазовых переходов второго рода характерно с изменением температуры постепенное изменение структуры. Оно сопровождается монотонным изменением энтальпии, энтропии и объема фаз. [c.221]

    Физические процессы, протекающие при подобной трансформации кристаллохимической системы, характеризуются неравновесными термодинамическими условиями, когда скорости тепловой релаксации меньше времени излучательной и химической релаксации. Такие процессы характерны для фазовых переходов в твердой фазе, которые определяются изменением кристаллической структуры. Структурные фазовые переходы в кооперативных системах идут как с поглощением, так и с выделением энергии, что обусловливает появление в системе высокоэнергетических состояний фрагментов молекул (атомов), участвующих в последующих химических превращениях и излучательных процессах. Существенно неравновесные условия в кристаллохимической системе обусловливают, очевидно, и высокоэнергетические кооперативные процессы в системе возбужденных осцилляторов, проявляемых, в частности, в виде волны сверхизлучения. [c.78]


    Основная область применения описываемых методов заключается в исследовании иерархии структур исходных НДС, используемых в качестве сырья для процессов термолиза, а также для изучения динамики изменения структуры НДС вблизи точек фазовых переходов. [c.13]

    Исходя из ранее полученных нами результатов исследований структуры закрученных расширяющихся газовых потоков и изменений их термодинамических параметров, можно считать, что процесс конденсации паров происходит и в объёме закрученных струй основного потока и противотока. Наиболее интенсивно процесс конденсации идет в противотоке или холодном потоке. Однако наличие паровой фазы снижает эффект охлаждения, так как при конденсации вьщеляется тепло. Экспериментально было показано, что эффективность вихревых аппаратов снижается и в случаях, когда противоток имеет температуру ниже температуры точки росы или когда превышается теоретически возможное снижение температуры из-за полного фазового перехода паров. Эти данные объяснены особенностями устойчивой структуры закрученных струй, а также наличием в потоках термодинамических температур ниже термодинамической температуры выводимого из аппарата холодного потока. [c.231]

    Как уже было отмечено, процессом фазового перехода жидкость-пар можно управлять различными воздействиями на систему, в частности на сорбционно-сольватный слой, введением в систему поверхностно-активных веществ, механическими, волновыми или другими способами [114]. Причем дозы подобных воздействий должны быть строго определенными, чтобы не вызвать в системе обратных эффектов, ухудшающих требуемые показатели процесса. Указанные воздействия будут оказывать влияние прежде всего на структуру образующихся в системе агрегативных комбинаций, причем зависимости изменения структуры и некоторых выходных параметров процесса могут иметь унимодальный, а в большинстве случаев полимодальный, характер. [c.111]

    Выявление закономерностей термолиза нефтяного сырья приобретает особую важность, в частности, при разработке технологии производства и улучшения качества углеродных материалов и изделий на их основе. Основным вопросом при этом является изучение и регулирование физико-химических свойств реакционной массы, а также параметров фазовых переходов в процессе термополиконденсации нефтяных остатков и механизма формирования структуры углеродных материалов, связанных с изменением размеров и природы частиц, входящих в состав дисперсной фазы. Указанные процессы происходят при получении нефтяного пека, когда реакционная масса сырья представляет собой дисперсную систему, последовательные этапы превращений в которой определяют структурно-механические, волокнообразующие, связующие и другие свойства конечных продуктов термолиза. [c.131]

    В сравнении с низкомолекулярными кристаллами, для которых характерно скачкообразное изменение структуры, кристаллические полимеры переходят в другое фазовое состояние в некотором температурном интервале. Скорость кристаллизации полимеров разного химического состава находится в весьма широких пределах. Одни кристаллизуются быстро, другие медлен-по, что зависит от степени упорядоченности пачек в аморфном состоянии и от сложности построения надмолекулярных структур. Если пачка в аморфном состоянии состоит из более или менее параллельно сложенных макромолекулярных цепей, то процесс кристаллизации заключается в повороте цепей (см. рис. 3). На это требуется относительно малое время. Более длителен переход одной надмолекулярной структуры в другую. Если полимер кристаллизуется быстро, то при охлаждении расплава температура кристаллизации соответствует температуре плавления кристаллов. Если охлаждать расплав полимера, кристаллизующегося медленно, то он может закристаллизоваться при температуре нил<е Тпи или вовсе не закристаллизоваться. Таким образом, ускоряя или замедляя процесс охлаждения расплавленного полимера, можно изменить его структуру и свойства. Этим пользуются при переработке полимеров. [c.21]

    Одним из наиболее характерных свойств полимеров, заложенных уже Б, самой структуре линейных макромолекул, является способность к большим обратимым деформациям (высокоэластические деформации, каучукоподобная эластичность). Релаксационная природа высокоэластической деформации полимеров впервые была установлена в СССР Александровым и Лазуркиным. Высоко-эластичность реализуется лишь в определенном температурном диапазоне на нижней границе этого диапазона полимеры переходят в твердое (точнее, твердообразное) состояние, а на верхней Становятся более или менее обычными жидкостями, хотя и с высокой вязкостью. Эти переходы не связаны с изменением структуры, т. е. не являются фазовыми, а имеют чисто кинетическую (релаксационную) природу. Границы этих переходов (как, впрочем, и фазовых) не являются незыблемыми и зависят от давления, внешних полей и т. д. Однако, в отличие от фазовых переходов, положение этих границ очень сильно зависит от скорости воздействия на систему. [c.7]


    Видов структурного стеклования несколько, но термин структурное стеклование применяют лишь в двух случаях когда причиной стеклования является понижение температуры (это показано на рис. II. 2) или повышение давления. Постепенное понижение температуры или повышение давления сопровождается, разумеется, изменением структуры, в первую очч редь —уменьшением свободного объема системы. Одновременно постепенно увеличивается межмолекулярное взаимодействие (по экспоненциальному закону возрастает плотность энергии когезии) и затормаживается вращение звеньев вокруг валентных связей. По достижении некоторой температуры или давления без изменения структуры при температуре или давлении перехода (в отличие от фазовых переходов) сегментальное движение полностью выключается, и система утрачивает все моды теплового движения, связанные с проявлениями высокоэластичности. [c.81]

    Фазовые переходы в простых веществах или в соединениях могут осуществляться при определенных температурах и давлениях. Обычно при этом происходят заметные изменения в расположении частиц в кристаллической структуре, сопровождающиеся даже изменениями характера связей между ними. [c.366]

    Кристаллические полимеры, так же как и низкомолекулярные кристаллические вещества, могут существовать в различных кристаллохимических модификациях. Переходы одной модификации в другую, заключающиеся в перестройках структуры полимера на молекулярном уровне, т. е. в изменении строения элементарной ячейки, представляют собой фазовые переходы. [c.181]

    Справочник У. Д. Верятина и др. Термодинамические свойства неорганических веществ под редакцией А. П. Зефирова содержит для большого числа веществ значения теплот образования (АЯ , 293), энтропии (Згэз), параметров фазовых переходов, коэффициентов уравнений, выражающих температурную зависимость теплоемкости, давления насыщенного пара и изменения энергии Гиббса при реакциях образования (АСг . г), а также термодинамические свойства металлических сплавов. Данные приведены из разных источников. Наряду с этим приводятся характеристики кристаллической структуры веществ. Все величины, зависящие от единиц измерения энергии, выражены параллельно через джоули и термохимические калории.  [c.76]

    Качественная корреляция с характером изменения энтальпий атомизации наблюдается и в изменении температур плавления простых веществ (рис. 7), которые также в определенной мере обусловлены сравнительной прочностью связей в кристаллах. При этом надо иметь в виду, что полная корреляция была бы возможна, если бы простые вещества обладали одинаковой структурой и одинаковыми значениями энтропии. Дело в том, что плавление как фазовый переход характеризуется равенством свободных энергий Гиббса сосуществующих фаз, т. е. одновременно надо учитывать и энталь-пийный, и энтропийный факторы. Значения же энтальпии атоми-зацни сопоставимы только с одним из них. Тем не менее наинизшие температуры плавления в пределах каждого периода свойственны благородным газам, в малых периодах в пределах группы температуры плавления понижаются, а для d-элементов наблюдается более [c.35]

    По определению Л.Д. Ландау, фазовым переходом второго рода в общем смысле считается точка изменения симметрии. Иными словами, в такой точке скачкообразно изменяется упорядоченность системы. Поскольку вблизи точки фазового перехода второхо рода свойства фаз мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой. Такие зародыши называются флуктуациями [14]. При этом существенно изменяются динамические свойства системы, что связано с очень медленным рассасыванием флуктуаций. В многокомпонентных нефтяных системах под флуктуациями понимаются образующиеся ассоциаты нового структурного уровня. Благодаря силам обменного взаимодействия рассасывание таких флуктуаций, то есть спонтанный разрыв межмолекулярных связей, имеет существенно меньшую вероятность, чем их образование. Поэтому в точках фазовых переходов из флуктуаций довольно быстро формируется новый уровень надмолекулярной структуры. [c.7]

    Возникновение и развитие всех этих пространственных структур, обладающих фазовой устойчивостью, происходит во времени путем сцепления или срастания частиц дисперсной фазы и приводит в системах с жидкой средой к изменению характера течения или к полному отверждению системы (переход золь гель). Эти структуры охватывают весь объем дисперсной системы. В зависимости от природы действующих сил сцепления различают, по Ребиндеру, два основных типа структур коагуляционные и конденсационные с фазовыми контактами [24]. [c.285]

    Общим Критерием фазового перехода является изменение структуры тела. Фазовый переход, в частности переход аморфной фазы в кристаллическую, происходит скачкообразно и сопровождается изменением ряда физических свойств материала, например удельного объема, теплоемкости, сорбщш. Обычно при фазовом переходе имеет место поглощение или выделение тепла. [c.96]

    Таким образом, расчеты показывают, что в цепочке взаимодействующих атомов, дискретным аналогом которой является одномерная модель Изинга, на метастабильной стадии релаксации фазовый переход второго рода возможен. Причем в результате фазового перехода возникает среднее значение параметра порядка, пропорциональное полному числу атомов в цепочке. Фазовый переход удается объяснить благодаря введенному в рассмотрение полю Вейсса, ориентирующего атомы в определенных состояниях. Вычисления, проведенные в первом порядке теории возмущений по костанте связи, указывают на то, что в начальные моменты времени перехода среднее значение параметра порядка мало и пропорционально флуктуации разности чисел атомов, находящихся в разных ямах термодинамического потенциала. С течением времени поле Вейсса нарастает и среднее значение параметра порядка увеличивается, достигая своего насыщения. Необходимым условием насыщения является превышение начальной флуктуации Хо своего порогового значения. После окончания метастабильной стадии релаксации фазовый переход разрушается и в этом смысле есть предельный переход к равновесной теории Изинга. Длительность метастабильной стадии релаксации может быть весьма большой, так как она характеризуется отношением высоты потенциального барьера в термодинамическом потенциале к интенсивности теплового шума. Наконец отметим, что в рамках данного подхода, на наш взгляд, возможно также описание процесса возникновения и развития доменной структуры при фазовом переходе. При этом требуется анализировать процесс изменения поля Вейсса в пространстве и времени. [c.178]

    Экспериментальные температурные кривые изменения концентрации парамагнитных центров (ПМЦ) действительно содержат ряд экстремумов. В работе [3] приведены типичные зависимости концентрации различных носителей парамагнетизма в различных нефтяных системах от изменения температуры (рис. 1). В работе [16] были проведены уникальные исследования изменения концентрации парамагнитных центров в тяжелых нефтепродуктах при их нагреве до высоких температур. На рис. 2 приведены полученные кривые, которые имеют точки перегиба, соответствующие структурным фазовым переходам. Здесь же приводятся зависимости так называемой изотропной составляющей, которая определяется по характеру сверхтонкой структуры ЭПР-спектров и указывает на преимущественно свободное или структурно связанное состояние ванадиловых комплексов, что также является показателем структурных превращений в НДС. [c.10]

    Схема изменения высот слоев А, В и С приведена на рнс 7. Видно, что с изменением баланса сил при фазовом переходе высота слоев изменяется по различным законам. Кривая слоя А выражает уменьшение высоты исходной фазы. Аналогично этому, кривая слоя С показывает нарастание высоты макрофазы. Кривая изменения высоты межфазного слоя В имеет экстремальный характер. Принципиально экстремум может иметь ми-иимудм или максимум (как на рис. 7). Это зависит от того, в каком направлении изменяются размеры элемента структуры дисперсной фазы при внешних воздействиях (уменьшаются илн уиеличива.ются) в процессе фазового перехода. [c.70]

    Транспорт флюидов по стволу скважины и инертного сырья по. магистральным трубопроводам различается. Под нормальным технологическим режимом эксплуатации скважин подразумеваются усилия, прн которых обеспечиваются наибольшие дебиты нефтяного сырья. Наряду с экстремальными, технологическими факторами (смятие эксплуатационной скважины, ее разрушение, вибрация и т. д.) ограничивают дебит скважины факторы, связанные с физико-химическими свойствами потока, движущегося по сквал сине в условиях изменяющегося давления и температуры. К ним, прежде всего, относятся песчаные пробки, образующиеся в результате скрепления частиц при помоиди вяЛ Сущих компонентов нефти, парафиноасфальтеновые отложения, кристаллогидраты природных газов и т. д. Все эти явления так или иначе связаны с фазообразованием, изменением размеров различных типов элементов структуры дисперсной фазы, динамикой расслоения дисперсной системы и могут быть решены па основе теории регулируемых ММВ и фазовых переходов. По мере перемещения от забоя скважины на дневную поверхность снижаются температура и давление, что ведет к изменению условий равновесия в потоке нефтяного сырья и выпаданию из него парафинов, асфальтенов, воды, песка с образованием структурированных систем на внутренних поверхностях эксплуатационных колонн (осадков, газогидратов). [c.189]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Термограммы фазовых переходов нафталина и трикозана, их бинарных смесей приведены на рис. 6.8, из которого видно, что молекулы трикозана образуют примитивную орторомбическую кристаллическую структуру, которая при увеличении температуры переходит в гранецентрированную орторомбическую кристаллическую решетку. При увеличении температуры выше 39°С, эта структура переходит в гексагональную и трикозан плавится при 50°С. В отличие от кристаллической структуры трикозана, в которой фрагменты алифатических цепей принимают различные конформации при изменении температуры, нафталин имеет малоподвижную структуру с плоско-параллельной упаковкой ароматических колец. Молекулы трикозана ограниченно растворяются в нафталине, так как уже при концентрации н-С. зН 5% мае. плавление смеси является гетерофазным. Нафталин имеет более высокую растворимость в трикозане, определенную по термограммам и составляющую 30% мае. При невысоких концентрациях молекулы трикозана в нафталине взаимодействуют преимущественно друг с другом и модификационные переходы сохраняются. Присутствие молекул нафталина в структуре парафина вызывает сужение температурного [c.153]

    Как правило, большинство нефтяных дисперсных систем существуют в обычных условиях в неравновесных состояниях. Это приводит к проявлению многочисленных локальных коллоидно-химических превращений в структуре нефтяной дисперсной системы, которые в свою очередь отражаются на макросвойствах системы, например на седиментационной устойчивости, т.е. склонности к расслоению системы, ее вязко-стно-структурных характеристиках и т.д. Важнейшим проявлением макросвойств в нефтяных дисперсных системах являются фазовые переходы, спонтанно происходящие в них в различных условиях существования. Любая нефтяная дисперсная система отличается присухцей ее пространствеьшой внутренней организацией, которая претерпевает непрерывные превращения во времени с участием структурных элементов систем, Общепринятое понятие энтропии системы, яв уяющесся мерой упорядоченности структуры, в данном случае практически не применимо, вследствие чрезвычайной сложности нефтяной системы. В этой связи в нефтяных дисперсных системах фиксируются некоторые характеристические области вблизи состояний равновесия, где система находится в кризисном состоянии, которые проявляются в системе при изменении термобарических условий. В нефтяной дисперсной системе может существовать несколько таких областей. В каждой переходной области система проявляет характерные свойства, отличается наивысшей восприимчивостью к тем или иным воздействиям. [c.174]

    Рассмотренные выше фазовые переходы в нефтяных системах также сопровождаются тепловыми эффектами с изменением энтропийного фактора. Очевидно, в нефтяных системах можно зафиксировать несколько фазовых переходов первого рода. Каждый такой переход характеризует кризисное состояние системы и приводит в конечном итоге к определенной новой упорядоченности элементов внутренней структуры системы. Таким образом, характерной особенностью кризисного состояния нефтяной системы является непрерывное изменение ее энтропии от начального до конечного значений, причем такие переходы в нефтяных системах могут наблюдаться в нескольких температурных интервалах. Характерно, что для значений по функциональной оси в последовательной серии кризисных состояний может нарушаться условие монотоности, что связано с различными факторами воздействия на систему в предшествии фазового перехода, и соответственно возможности изменения конфигурации и упаковки структурных элементов системы в момент фазового перехода. [c.181]

    Процессы внедрение—выделение доноров сопровождаются фазовыми переходами, которые соответствуют изменениям номера ступени. Последнее иллюстрируется данными рис. 6-4, показывающими изменение зависимости состава МСС калий— графит от разности температур графита и калия и, следовательно, давления паров калия. С уменьшением отношения К/графит образуются МСС высоких ступеней, а их структура в некоторых случаях становится более упорядоченной [6-11]. При нагревании МСС с углеродной матрицей из кристаллического графита происходит прямой переход от КСв (I ступень) к КС16 (П ступень). При использовании нефтяного кокса КСв переходит к двум типам структур КС12 (I ступени) с отличающимся от КСв расположением в слоях атомов калия и II ступени КС24- [c.323]

    Отвердевание вещества следует рассматривать не как простой фазовый переход, а как процесс синтеза твердого соединения — молекулярного или атомного. Очень важно знать условия отвердевания вещества. Главнейшие из них определяются термо-динамичеокими методами. При отвердевании вещество приобретает поверхность, отделяющую его от других веществ — образует твердые тела. Попытаемся найти критерий их устойчивости. Если процесс образования твердых молекулярных соединений имеет чисто физический характер, то, как мы увидим ниже, процесс, образования твердых атомных-соединений — это по преимуществу химический процесс. Сопровождающие его изменения свободной энергии обычно во много раз превосходят ее изменения при образовании твердых молекулярных соединений. Отсюда — большое осложнение процесса, и в то Же время большое многообразие непериодических структур тех веществ, которые являются продуктами этого процесда. [c.144]

    Естественным образом электрйческую прочность полимеров можно использовать не как эксплуатационное свойство, а для исследования структуры постольку, поскольку она связана с температурой, а через нее — с электропроводностью и деформационными состояниями. С определенными оговорками, при этом можно пользоваться принципом ТВЭ. Так, электрическая прочность подавляющего большинства полимеров в силу указанных факторов при повышении температуры убывает, причем наиболее резкие изменения происходят в области релаксационных или фазовых переходов. [c.263]

    Участки резкого изменения проводимости твердых электролитов с переходом их в состояние ионных сверхпроводников (см. рис. 32) можно рассматривать как следствие плавления катионной подрешетки. Часто, но не всегда плавление катионной подрешетки сопровождается фазовым переходом. Например, для Agi на участке резкого изменения V. наблюдается переход от вюрцитной структуры P-AgI к плотноупако-ванной объемно-центрированной кубической решетке а-Agi. Ионный сверхпроводник можно представить в виде ажурного жесткого анионного остова, пропитанного катионной жидкостью . Иногда жесткий остов оказывает меньшее сопротивление движению катионной жидкости, чем анионы в расплаве электролита. Поэтому при плавлении твердого электролита возможно даже уменьшение проводимости. Количественная теория проводимости ионных сверхпроводников находится в стадии разработки. Этот класс электролитов привлекает в настоящее время особое внимание в связи с возможностями его широкого практического применения. [c.99]

    Большие перспективы открывает применение эффекта Мёссбауэра для исследования свойств специальных сталей, в состав которых всегда входит в той или иной концентрации железо. Такие исследования несут информацию о фазовых (структурных) превращениях в сталях, дают сведения, позволяющие исследовать прочность, износостойкость и так далее. Например, наблюденное в работе [21] аномальное поведение температурной зависимости величины внутреннего эффективного поля на ядрах Fe в интервале температур, совпадающем с температурой хладноломкости для сталей У9А и ст. 10, указывает на изменение характера химической связи при электронном фазовом переходе, который может быть первопричиной перехода стали из пластичного состояния в хрупкое. Исследование сверхтонкой структуры мессбауэровских спектров на ядрах Fe в сплаве Fe + 48,2 ат. % Ni и в чистом железе [22] позволило обнаружить отклонения величины относительных интенсивностей компонентов спектра для образцов, подвергнутых деформации от относительных интенсивностей компонентов спектра, полученного с недеформированного образца, что объясняется влиянием магнитной текстуры прокатки, вызванной кристаллографической текстурой прокатки и рекристаллизации. [c.217]

    Фазовые переходы ра.зделяются на два класса. К фазовым пере.кодам первого рода относятся испарение, возгонка, плавление, полиморфные переходы и т.д. Эти переходы сопровождаются выделением или поглощением теплоты и изменением объема фазы. Фазовые переходы второго рода не обладают этими качествами. Примерами фазовых переходов второго рода могут служить такие процессы, как переход железа из ферромагнитного состояния в парамагнитное а-Ре—ь -Ре при 769 °С без изменения кристаллической структуры металла и при сохранении объема фаз (изменение энтропии в этом переходе равно нулю) переход металла в сверхпроводящее состояние переход жидкого гелия в сверхтекучее состояние. [c.9]

    Противопоставление этих понятий кажется странным твердые фазы, как упоминалось, в принципе имеют переменный состав. Используя не вполне современную терминологию, это можно назвать образованием твердых растворов. С другой стороны, известны попытки представления фаз с широкими областями гомогенности в виде умозрительных гомологических рядов соединений. Основное различие между фазой с широкой областью гомогенности (твердым раствором) и гомологическим рядом соединений состоит в том, что в первом случае сохраняется единый тип дальнего порядка во всем интервале составов, а во-втором он скачкообразно меняется при переходе от одного соединения гомологического ряда к другому. Тип дальнего порядка и определяет сгехиометри-ческий состав соединения. Некоторые сложности возникают в тех случаях, когда рассматривается взаимодействие между двумя соединениями разного стехиометрического состава, но близкой структуры. В этом случае иногда находят непрерывный ряд твердых растворов , что в принципе возможно, если переход фазы с одной структурой в другую может быть фазовым переходом второго рода. Обычно такие переходы рассматриваются для фазы заданного состава при изменении температуры. Нас будет интересовать возможность перехода от фазы одного типа (с одним типом дальнего порядка) к другой (с другим типом дальнего порядка) без гетерогенной области. При этом предполагается, что все образцы находятся в равновесном состоянии. [c.164]

    Чем больше скорость действия силы, тем выше Тс прн мехаи) -ческом стекловании. Чем выше скорость охлаждения, тем выше Т,-при структурном стекловании. Это значит, что стеклование есть ие структурный (фазовый), а релаксационный переход, определяемый не перестройкой надмолекулярной структуры, а величиной отклика системы на внешнее воздействие. Это отличает стеклование от фазовых переходов, таких, например, как кристаллизация или плавление, при которых происходит качественное изменение структуры. При кристаллизации выделяется теплота кристаллизации, при стекловании тепловой эффект отсутствует. При кристаллизации скачкообразно уменьшается свободный объем при стекловании объем не меняется, а излом на кривой Ууд—Т обусловлен лишь разными коэффициентами теплового расширения в эластическом и стеклообразном состоянии (рис. 10.1). Имеются и другие отличия, указывающие на то, что стеклование является релаксационным переходом, а не фазовым переходом первого или второго рода. [c.144]

    Замечательной особенностью фазового перехода второго рода в жидком Не является отсутствие изменений структуры жидкости, т. е. изменений распределения атомов гелия в пространстве. Этот факт, отмеченный в ранних рентгенографических исследованиях Кеезома и других авторов, был подтвержден нейтронографическими измерениями Д. Харста и Д. Хеншоу [61]. Они изучили рассеяние медленных нейтронов (средняя дебройлевская длина волны равна 0,104 нм) жидким Не в интервале температур от 1,65 до 5,04 К, т. е. от температур, лежащих ниже Х-точки, до температур, близких к критической точке. Как известно, при заданной температуре частицы не могут быть локализованы в области пространства, имеющей размеры порядка средней длины волны де-Бройля. Средняя дебройлевская длина определяется уравнением [c.229]

    В некотор ых кристаллах при определенных температурах ионы одного типа самопроизвольно смещаются не паралаллельно друг другу, как в сегнетоэлектриках, а антипараллельно. Если в кристалле имеются готовые диполи, то они могут ниже некоторой температуры упорядочиться таким образом, что возникнут цепочки с антипараллельной ориентацией диполей. Такие кристаллы называются антисегнетоэлектриками [19—22]. Анти-сегнетоэлектрик можно рассматривать как совокупность вставленных одна в другую подрешеток, в каждой из которых дипольные моменты направлены параллельно, а их суммарный дипольный момент равен нулю. Природа спонтанной поляризации подрешеток антисегнетоэлектрика такая же, как и в сегнетоэлектриках. Один из примеров антисегнетоэлектрика, состоящего из двух подрешеток, показан на рис. 120. Таким образом, суммарная спонтанная поляризация антисегнетоэлектриков равна нулю. Поэтому антисегнетоэлектрики имеют неполярную структуру и центр симметрии пьезоэффект в них отсутствует. Так же, как и в сегнетоэлектриках, в антисегнетоэлектриках наблюдается фазо-(вый переход в параэлектрическое состояние. При этом происходят перестройка структуры и изменение свойств. При температуре перехода наблюдается максимум диэлектрической проницаемости, величина которой меньше, чем у многих сегнетоэлектриков. Фазовый переход может быть как первого, так и второго рода [19]. [c.277]


Смотреть страницы где упоминается термин Структура изменение при фазовых переходах: [c.141]    [c.54]    [c.37]    [c.38]    [c.215]    [c.162]    [c.215]    [c.242]    [c.200]    [c.270]   
Современная общая химия Том 3 (1975) -- [ c.0 ]

Современная общая химия (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор

Переходы фазовые



© 2025 chem21.info Реклама на сайте