Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиентное элюирование определение

    Прежде всего, это большая длительность процессов уравновешивания адсорбентов с растворителями, содержащими воду в микроколичествах, трудность приготовления таких растворителей с определенной и воспроизводимой влажностью. Из этого следуют плохая воспроизводимость параметров удерживания, разрешения, селективности. По этой же причине невозможно использовать градиентное элюирование — возврат к исходному состоянию настолько длителен, что значительно превосходит выигрыш времени за счет использования градиента. [c.19]


    УФ детектор можно использовать при градиентном элюировании, а также для определения в-в, не поглощающих УФ излучение. В этом случае в элюент добавляют в небольщой концентрации в-во, поглощающее УФ излучение, тогда анализируемое в-во, не поглощающее УФ излучение, дает отрицат. пик. Иногда используют ИК и сканирующие ИК спектрофотометры. [c.27]

    Определение углеводородного состава нефти и отдельных ее температурных фракций проводили методом жидкостной хроматографии на силикагеле в условиях градиентного элюирования с рефрактометрическим детектированием. Исследовали нефти из 1-го (скв. № 54 и 73), Мергельного (скв. № 20 и 51) и 2-го песчаного (скв. № 33 и 92) горизонтов. Физико-химическая характеристика образцов [c.71]

    Имеются несколько методов автоматического определения аминокислотных остатков в продуктах гидролиза пептидов, которые основаны на ионообменных методах с градиентным элюированием [43—45]. Соответствующие устройства, обеспечивающие создание непрерывных градиентов буферного раствора, применяли также и в анализе остатков сахаров [48, 49]. [c.388]

    В некоторых случаях, в частности, в опытах, имеющих целью определение оптимального состава растворителя для метода, который затем будет использоваться повседневно, удобна методика градиентного элюирования. Состав смеси растворителей, входящих в подвижную фазу, во время хроматографирования непрерывно меняют с предварительно установленной скоростью, что дает возможность решать при помощи одной хроматограммы проблему разделения сложной смеси веществ, имеющих совершенно различные коэффициенты распределения. Коэффициент распределения К, как указано в разделе Газовая хроматография (см. ниже), является мерой количества растворенного вещества в неподвижной фазе то отношению к концентрации вещества в подвижной фазе. [c.104]

    Следует отметить, что градиентное элюирование имеет определенные преимущества по сравнению со ступенчатым. При нем изменение среды происходит постепенно без резких скачков, которые во время ступенчатого элюирования могут стать причиной артефактов. Например, если слишком рано ввести новый буферный раствор, медленно мигрирующая часть белков из предыдущей ступени элюирования выйдет из колонки, имитируя новый пик. [c.23]

    Обычно хроматографию начинают при pH 7,5—8,0 и при концентрации иона С1 или СН зСОО 0,01—0,005 М и заканчивают при pH 8,0—8,5 и концентрации элюента 0,5—0,75 М. Определенные преимущества имеет градиентное элюирование. [c.203]

    Требования к чистоте растворителя при градиентном элюировании значительно выше, чем при изократическом. В процессе градиентного элюирования примеси, содержащиеся в растворителях, концентрируются в начале колонки и вымываются из нее по мере возрастания элюирующей силы подвижной фазы. При этом наблюдается сильный дрейф нулевой линии, а некоторые примеси элюируются узкими зонами и регистрируются детектором в виде самостоятельных пиков. В изократическом режиме примеси в начале эксперимента также могут концентрироваться на сорбенте, но в системе достаточно быстро устанавливается динамическое равновесие, и нулевая линия выравнивается на каком-то определенном уровне сигнала детектора. Этот сигнал во многих случаях можно скомпенсировать электрически, но при этом соответственно уменьшается линейный динамический диапазон детектора. [c.132]


    В жидкостной хроматографии разработано несколько приемов для решения проблемы элюирования, они основаны именно на изменении коэффициентов распределения и скорости движения подвижной фазы. Можно назвать следующие программированное изменение состава подвижной фазы (ступенчатое или градиентное элюирование[12, 24—26]), скорости потока или давления [27] и температуры процесса [27—29], а также использование установок из сопряженных колонок [26, 30]. Обсуждение преимуществ и недостатков этих приемов можно найти в обзоре Снайдера [30]. Некоторые из них не очень эффективны, а ряд других сопряжены с определенными экспериментальными трудностями. [c.88]

    Чтобы предсказать хроматографическую подвижность элементов, нужно прежде всего знать константы обмена или коэффициенты распределения [22]. На основании этих характеристик можно также предсказать положения пиков при градиентном элюировании [23] и влияние на разделение степени сшитости ионообменной смолы [24]. Показано, например [24], что наилучшее разделение щелочных металлов достигается на предельно сшитых смолах (рис. 51.2). Для определения оптимальных условий можно использовать результаты ионообменной хроматографии на бумаге, однако это возможно лишь в том случае, если речь идет о разделении конкретной смеси на аналогичном ионите [25]. Наблюдаемые расхождения в результатах часто вызваны либо использованием различных методик -[26], либо наличием связующих компонентов в ионообменной бумаге [27]. [c.323]

    В работе описан хроматографический метод определения компонентов и группового углеводородного состава органической части битумоминеральных смесей без ее предварительной экстракции с разделением на семь групп парафино-нафтеновые углеводороды, легкие, средние и тяжелые ароматические углеводороды, две группы смол, асфальтены [1]. Определение групп компонентов проводится в едином хроматографическом процессе. В основу положена жидкостная хроматография с градиентным элюированием, которая удовлетворяет всем требованиям, предъявляемым к экспрессным методам быстрота, возможность автоматизации процесса,. воспроизводимость, детальность и четкость разделения. [c.204]

    Техника проведения такого ступенчатого элюирования может быть очень проста и состоять в последовательном введении в колонку с адсорбентом определенных объемов растворителей увеличивающейся полярности. Иногда это осуществляют вручную, а при наличии соответствующего оборудования - насосами-дозаторами. Вторую модификацию градиентного элюирования осуществляют путем непрерывного увеличения элюирующей силы растворителя ао заранее заданной программе. Это достигается смешением двух или более растворителей разной силы в определенном соотношении с помощью специальных дозирующих устройств [2-5]. [c.40]

    Снайдер [28, 29] предложил связать разрешение с основными параметрами хроматографического процесса в жидкостной хроматографии с программированием состава подвижной фазы (градиентное элюирование) посредством определения медианного коэффициента емкости в условиях градиента kg), который является характеристикой средней скорости движения молекул [c.206]

    Программно управляемое выполнение операций отдельными блоками аппаратуры является необходимым условием автоматизации, и в последнем разделе о градиентном элюировании мы рассмотрим некоторые примеры такого управления. В простейшем случае сигналы, управляющие работой отдельных функциональных единиц хроматографа (насосов, кранов, регуляторов температуры), задаются механическим замыканием контактов по периметру диска, вращаемого мотором с постоянной скоростью. При программировании однофункциональной работы градиентного программатора можно использовать описанный выше график, который считывается фотоэлектрическим детектором, формирующим аналоговый сигнал по определенным графиком условиям. Циклическая работа аппаратуры программируется петле- [c.60]

    Начинать хроматографирование следует наименее полярным растворителем, обычно петролейным эфиром. Скорость отбора фракций зависит от типа и масштаба хроматографического процесса. Обычно скорость течения, измеренная в мл/ч, должна быть численно равна массе (г) использованного адсорбента. Большинство адсорбентов не затрудняет течение элюента по колонке. При применении некоторых особо тонкодисперсных адсорбентов, например оксида магния, может потребоваться введение вспомогательного фильтра, например кизельгурового. Для отбора элюата пригодны сборники фракций любого типа (см. гл. 8). Объем одной фракции устанавливают в соответствии с характером задачи и регулируют или с помощью переключателя с часовым механизмом при сборнике фракций, или путем изменения (притом только уменьшения) скорости потока элюента. Отобранные в течение определенных интервалов фракции анализируют методами ТСХ или ГЖХ, разработанными для данной методики разделения, и объединяют идентичные по составу фракции. Из объединенных фракций отгоняют растворитель посредством обычной или вакуумной перегонки в роторном испарителе при низкой температуре. Элюирование продолжают до тех пор, пока не перестанет элюироваться хроматографируемая проба. После этого элюирующую способность смеси увеличивают, повышая содержание более полярного компонента системы, который подают или в несколько порций, или постепенно (градиентное элюирование описание аппаратуры для градиентного элюирования см. в разд. 8.4 или в работе [45а]). Основное преимущество градиентного элюирования — это подавление образования хвостов сильно адсорбируемых [c.196]


    Для создания определенного pH и поддержания на необходимом уровне готовят соответствующий буферный раствор. Если это возможно, то буферный раствор подбирают таким образом, чтобы его функциональная группа была похожа на функциональную группу образца. Так, ацетатный буферный раствор приемлем для анализа карбоновых кислот, фосфатный — для люирования нуклеотидов. Большое значение имеет чистота буферного раствора, так как он не должен детектироваться выбранным детектором, что особенно важно при работе в режиме градиентного элюирования. Чистота буферного раствора зависит от фирм-производителей, и даже разные партии одной фирмы могут различаться по составу. Каждая новая партия буферного раствора тестируется двумя холостыми хроматографическими опытами перед использованием. Второй опыт показывает, существуют ли вещества, отложившиеся в колонке в процессе регенерации или в течение последних стадий предыдущего градиента. Хотя большинство разделений проводят в водных буферных растворах, иногда добавляют органический растворитель (метанол, этанол) в количестве 3-10% для повышения селективности и улучшения растворимости образца. При этом концентрация растворителя не должна быть велика, чтобы не выдать осаждения буферной соли, о чем будет свидетельствовать появление течи в системе и увеличение сопротивления в колонке. [c.38]

    Термин градиентное элюирование применим для методов, в которых состав элюирующего раствора непрерывно изменяется в процессе элюирования (концентрация элюирующего агента повышается). Вдоль колонки создается таким образом определенный градиент концентрации [21 — 23]. Повышение концентрации элюирующего раствора сопровождается улучшением ряда параметров. [c.61]

    Одним из наиболее эффективных способов повьш1ения качества разделения смесей является ГРАДИЕНТНОЕ ЭЛЮИРОВАНИЕ. Смысл приема заключается в увеличении по определенному закону элюирующей силы элюента в процессе одного анализа. [c.59]

    Для проведения анализа используются хроматографические колонки 120x2, заполненные Диасорбом С16 Т (16% углерода) или аналогичным по свойствам адсорбентом. Анализ проводится в режиме градиентного элюирования. Ступени элюента ацетонитрил -вода состава 60 40 (ступень А), 70 30 (ступень Б), 80 20 (ступень В), 90 10 (ступень Г). Программа ступенчатого градиента А Б В Г -1200 400 700 300. Для регенерации колонки используются 400 мкл ступени А. В случае УФ-детекции определение осуществляется на длинах волн 284, 296 нм. В случае флуориметрической детекции длина волны возбуждения - 282 нм, эмиссионный фильтр - от 360 нм. [c.102]

    В работе Уайта и Лоуфера [28] описано разделение антибиотиков группы цефалоспорина на колонке из нержавеющей стали внутренним диаметром 1,0 мм, покрытой изнутри стеклом и заполненной силикагелем, модифицированным группами С18 Таким способом были разделены пять антибиотиков данного класса (см рис 7-41) Этими же авторами проведено определение цефалоспорина в ферментативных бульонах Благодаря высокой чувствительности полумикро-ЖХ авторам удалось предварительную обработку пробы свести к простому ее разбавлению Уайт и Лоуфер осуществили также определение Примесей в антибиотиках класса цефалоспорина с использованием метода градиентного элюирования [c.197]

    Анионообменная смола техникон 3/28/У1 оказалась наиболее пригодной для разделения смеси о-фруктозы,о-маннозы и о-глю-козы при градиентном элюировании буферными растворами боратов (pH 8,5—9,3) при 30 °С [106]. Для количественного анализа, применяли смесь орсина с серной кислотой, точность определения 2—3%. В таких же условиях была разделена смесь трех указанных выше соединений плюс целлобиоза, целлобиулоза [c.89]

    Метод, описанный в работе [54], был применен Салковой и Никифоровой [56] для определения содержания нелетучих органических кислот в яблоках. Используя колонку, содержащую дауэкс 1-Х10 (200—400 меш), и градиентное элюирование муравьиной кислотой после удаления сахаров, авторы [56] определили содержание яблочной, лимонной и янтарной кислот, которые являлись основными компонентами, и некоторых других кислот, включая хлорогеновую, шикимовую и хинную кислоты. [c.177]

    Граоивнтное элюирование является наиболее ценным методом в жидкостной хроматографии. Этим термином называют процесс, предполагающий изменение состава элюента во времени. Элюирующая способность подвижной фазы при этом должна прогрессивно возрастать, так, чтобы из колонки за приемлемое время элюировались сильно удерживаемые разделяемые вещества. Градиентное элюирование можно рассматривать как аналог программирования температуры в газовой хроматографии. Изменение состава подвижной фазы обычно осуществляется непрерывно и бопее или менее линейно. Однако в определенных обстоятельствах может быть полезным резкое изменение состава элюента. [c.199]

    Последующее развитие ионообменной методики связано с применением автоматических устройств, описанных Лундгреном и Лёбом 136 ]. Метод, рекомендованный для производственных анализов смесей конденсированных фосфатов в составе детергентов, основан на градиентном элюировании и непрерывном анализе элюата с помощью автоанализатора. Прибор программируется для проведения кислотного расщепления полифосфатов, присутствующих в элюате. Образующийся при этом ортофосфат выделяется путем диализа и взаимодействует с молибдатом аммония. Фосфорномолибденовая кислота восстанавливается гидразинсульфатом голубая окраска восстановленного раствора используется для непрерывных колориметрических измерений, результаты которых регистрируются автоматически. Прибор калибруется с помощью смесей известного состава. Образцы, содержащие только орто-, пиро- и три(поли)фос-фат, могут быть проанализированы в течение 1 ч. В присутствии триметафосфата для анализа требуется обычно 2 ч. Точность метода 3% от количества основного компонента. Для компонентов, присутствующих в меньших количествах, точность определения несколько ниже. [c.394]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    В табл. IV. 3 приведены условия определения стабилизаторов методами ВЭЖХ. При разделении соединений, близких по полярности, ирименение элюента постоянного состава (изократи-ческая система), дает большую точность по сравнению с градиентным элюированием. Для разделения веществ, сильно различающихся по полярности, обычно применяют градиентную элюцию. [c.248]

    При определении фторида в ряде природных материалов необходимо предварительно избавиться от мешающих ионов, главным образом от избытка фосфата [233]. С этой целью пробу пропускают через колонку с сильноосновным ионитом дауэкс 1-Х10 (0,07—0,15 мм). Сначала ионит трижды обрабатывают 100 мл ЗМ раствора гидроксида натрия и ЗМ соляной кислоты. После обработки ионит оставляют в ОН -форме, промывают водой и помещают в колонку размером 1X10,5 см. В эту колонку вводят смесь 0,5 мл раствора ЫаР, содержащего 25 мкг Р , 0,5 мл раствора КН2РО4, содержащего 12,5 мг Р (Р Р равно 1 500), и 1 мл раствора, содержащего радиоактивный изотоп (25 мкКи). Предварительное градиентное элюирование, проведенное с целью десорбции фторида, показало, что элюирование лучше всего вести 0,5М раствором гидроксида натрия. Элюент пропускают через колонку со скоростью 8— [c.289]


Смотреть страницы где упоминается термин Градиентное элюирование определение: [c.153]    [c.125]    [c.204]    [c.317]    [c.339]    [c.198]    [c.58]    [c.40]    [c.117]    [c.169]    [c.40]    [c.117]    [c.58]    [c.235]   
Оптимизация селективности в хроматографии (1989) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Элюирование



© 2025 chem21.info Реклама на сайте