Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиент непрерывный

    До сих пор речь шла о механизме элементарного акта синтеза АТР. Величина трансмембранного Д/1ц+ не имеет никакого отношения к элементарному акту. Этот градиент непрерывно поставляет ионы водорода для повторяющихся ударов , реализуя, таким образом, возникновение неравновесных состояний и их последующую конформационную релаксацию. [c.107]

    Одним из главных усовершенствований в деле фракционирования клеточных компонентов было введение техники центрифугирования в градиенте плотности. Различают два типа градиентов непрерывный, создаваемый с помощью специальных устройств различной степени сложности, и прерывистый, образующийся путем осторожного наслаивания друг на друга вручную нескольких слоев с различной плотностью (при этом самый тяжелый слой обычно помещается на дно пробирки). Градиенты плотности используют для двух различных целей. [c.250]


    При использовании этого метода нагретая печь с отрицательным температурным градиентом непрерывно (периодически) перемещается вдоль колонки при непрерывной подаче в колонку анализируемой смеси. Тяжелые компоненты (примеси) перемещаются вдоль колонки в зоне печи и периодически элюируются из колонки. Кольцевая колонка заполнена сорбентом, вдоль колонки [c.357]

    И называемого смесителем. Второй сосуд, в котором содержится растворитель б, называют резервуаром. Если оба сосуда имеют одинаковую емкость, то получается линейный градиент (прямая 1 на рис. 1.10). Если резервуар уже смесителя, то получается непрерывно возрастающий градиент (кривая 2 на рис. 1.10), а если более узким является смеситель, то градиент непрерывно уменьшается (кривая 3). Обычно для хроматографического разделения более выгоден линейный (/) или непрерывно возрастающий (2) градиент. [c.34]

    Гидродинамическая теория диффузии, рассматривающая этот процесс как поступательное движение ионов — сфер с радиусом Г1 — в непрерывной вязкой среде, вызванное градиентом химического потенциала, позволяет получить некоторые полезные соотношения. Так, из нее вытекает, что [c.141]

    Второй член уравнений пропорционален градиенту температуры или концентрации. Постоянным коэффициентом пропорциональности является тепло- или массопроводность фазы а или р. В элементах непрерывного процесса тепло- и массоемкость отличается от емкости фаз элементов периодического процесса на множитель линейной скорости потока. [c.156]

    До сих пор метод динамического программирования приводился для последовательного включения элементов процесса. Если число элементов процесса в схеме очень велико, удается рассматривать всю систему как одну аппаратурно-процессную единицу, в которой состояние главного потока изменяется непрерывно в направлении течения. Приведенный пример схемы последовательно соединенных реакторов дает понятие о возможности перехода ряда дискретных реакторов (смешения) в один трубчатый реактор (вытеснения), который уже был описан в гл. И. Теперь возникает вопрос каков оптимальный температурный градиент трубчатого реактора Ответить на него можно непосредственно, не приступая на основе общих рассуждений к динамическому программированию элемента процесса непрерывного действия. [c.349]

    Можно доказать, что существование и непрерывность трех частных производных от а необходимы п достаточны для существования вектора-градиента. [c.362]

    Таким образом, градиент концентрации на выходе из колонны, являющийся функцией коэффициента продольного перемешивания, имеет точку разрыва непрерывности первого рода при = 0. Граничные условия (3.10), (3.14) удовлетворяют предельному переходу. [c.150]


    Химическая реакция протекает сравнительно быстро. Действительно, ни в одной из подобных систем, изученных экспериментально до настоящего времени, скорость реакции не является лимитирующей, но хорошо известны примеры, когда стадией, определяющей скорость процесса, служит диффузия в жидкой или твердой фазе. Известны также случаи, где оба эти фактора представляют собой величины одинакового порядка. Технологический расчет ионообменников отчасти осложнен тем, что процесс проводится обычно в неподвижном слое и поэтому протекает нестационарно при непрерывно изменяющихся градиентах концентраций . [c.177]

    Кинетика называется простой, если существует хотя бы один положительный линейный закон сохранения m vJ) и выполнены следующие условия существует такой химический псевдопотенциал х(с), что а) градиент y hJ l, т]) существует и непрерывно зависит от т] при т1 ] < а (a > О — некоторое положительное число, / = 1,. ... . ., Д) 6) для каждого е 8 существуют числа т - 1), 7 = 1,. . iг, для которых 0) = — [c.120]

    Обмен твердыми частицами между следом пузыря и непрерывной фазой (когда пузырь движется вверх, достигая свободной поверхности слоя) приводит к обогащению следа мелкими частицами по сравнению со средним гранулометрическим составом слоя. В результате сепарации возникает градиент концентрации мелочи но высоте слоя (рис. XIV- ). [c.556]

    Развитие вихревого движения приводит к интенсивному поперечному переносу, к развитию турбулентности и, следовательно, интенсивному перемешиванию в потоке. В то же время для осуществления процессов массопередачи необходимо наличие градиента концентраций вдоль потока от входа до выхода нз аппарата, которые должны непрерывно изменяться. Интенсивное перемешивание в турбулентном потоке вызовет и продольное перемешивание, что снизит продольный градиент концентраций и ухудшит разделение. Чем больше будет коэффициент вихревой диффузии тем больше будет влиять эффект перемешивания. В этом смысле коэффициент служит характеристикой интенсивности перемешивания в диффузионных процессах. [c.197]

    В расширяющемся диффузорном потоке происходит (при скоростях, меньших скорости звука) уменьшение средней скорости в направлении движения с соответствующим повышением давления. Это повышение давления распространяется на все сечение, включая и пограничный слой. Градиент давления здесь положительный и среда движется из области с более низким давлением в область более высокого давления. Движение в пограничном слое происходит частично за счет собственной кинетической энергии и частично за счет энергообмена со слоями, лежащими в ядре потока. Вследствие того что скорость непрерывно уменьшается в направлении движения, наступает момент, когда в пограничном слое имеющейся кинетической энергии недостаточно, чтобы преодолеть положительный градиент давления. Движение в пограничном слое останавливается или даже приобретает обратное направление, т. е. происходит отрыв потока от стенки. [c.18]

    На рис. 1.19 дана схема структуры установившегося движения потоков в ВТ с ВЗУ при д = 0,5. Поступая в ВЗУ, сжатый газ движется по сужающимся винтовым каналам, разгоняясь до скоростей порядка звуковых. В этом случае имеются условия для возникновения и сверхзвуковых течений по выпуклой стороне каналов, в первую очередь, за счет значительных поперечных градиентов давления при общем снижении термодинамической температуры за счет непрерывного перераспределения поля скоростей, действия центробежного поля и возникающих вторичных циркуляционных течений и вихрей различного вида по высоте канала происходит и температурное разделение слоев. При этом наиболее низкие термодинамические температуры следует ожидать в средней части слоев. После истечения из каналов ВЗУ газ в виде ленточных спиральных струй движется по цилиндрической поверхности трубы, сохраняя приобретенный характер распределения скорости и температуры по высоте. Центробежное поле создает в области сопловых вводов большие градиенты гидростатического давления в радиальном и меньшие — в осевом направлениях. Нижние и средние слои струй, испытывая различной интенсивности торможение, делают реверс осевой скорости на различном удалении от диафрагмы и образуют охлажденный поток. Нижние слои струй, имеющие относительно средних несколько пониженное давление и повышенную термодинамическую температуру, попадая в области малых давлений за срезом ВЗУ, делают поворот на меньшем удалении от диафрагмы и большем радиусе. [c.49]

    При непрерывной абсорбции одного газа из газовой смеси, которая постоянно обновляется, устанавливается некое равновесие с постоянным градиентом концентрации. Перенос молекул газа осуществляется уже не путем простой диффузии (как в случае покоящегося газа) для восстановления концентрации молекул, удаляемых с поверхности раздела фаз. [c.105]


    Скачкообразный сток теплоты на границе пленки б, таким образом, Буевич заменил непрерывным стоком по всей глубине этой пленки. Введя целый ряд предположений, частично основанных на допущениях, введенных в его предыдущих работах, Буевич оценил градиент температуры внутри пограничного слоя и тем самым его толщину б и определил величину а. из естественного соотношения д = Т1 ов Я АГ/б = ос ЛТ, [c.143]

    Рассмотренная особенность аэрозолей имеет отношение и к движению дисперсионной среды относительно дисперсной фазы. Например, в поле температурного градиента газообразная среда, двигаясь из области высоких температур в область низких температур (термодиффузия), увлекает за собой частицы дисперсной фазы (термофорез), которые концентрируются в холодной области. Зависимость силы трения при движении частиц определяется также формулой (IV. 19) и, соответственно, соотношением между величинами К п г. Если Я <С то движение частиц обусловлено потоком непрерывной среды (гидродинамический режим), который захватывает частицу. При условии X г причина движения частиц оказывается той же, что и для движения газообразной среды, различие состоит только в интенсивности молекулярно-кинетического движения, [c.194]

    Во втором периоде сушки нарушается равновесие влаги в материале, возникает градиент влажности по толщине и влага движется к поверхности. Количество испаряющейся влаги непрерывно уменьшается. Закон перемещения влаги из внутренних слоев к поверхности можно описать уравнением [c.279]

    Электрофоретическая скорость эмульсии при градиенте потенциала определяется не менее чем из 20—30 показаний для двух направлений потока. Перед исследованием каждый образец эмульсии необходимо разбавлять непрерывной фазой, а среднюю скорость определять при нескольких разностях потенциалов, убеждаясь, что прилагаемое напряжение не влияет на результаты. Обычно поток бывает небольшим, даже в хорошо проводящей системе, так что любое повышение температуры за счет него незначительно. [c.163]

    Решающее значение теплопроводности пограничного слоя, определяемой хаотическим движением частиц, говорит о том, что градиент температур в пограничном слое есть непрерывная функция, и поэтому может быть использована общая теория переноса и, стало быть, теплоотдача конвекцией должна подчиняться уравнению (10). [c.85]

    Непрерывное принудительное удаление вновь расплавленного полимера создает возможность сохранения тонкой пленки расплава между горячей контактирующей поверхностью и твердой пробкой полимера. Существование тонкой пленки позволяет использовать высокие градиенты температуры (и, следовательно, обеспечивать большую скорость теплопередачи) при этом полимер нагревается до сравнительно невысоких температур и не подвергается термодеструкции. Быстрое удаление полимера из областей с высокой температурой также уменьшает время его пребывания при повышенных температурах. Наконец, принудительное удаление расплава вызывает его дополнительный разогрев за счет вязкого трения и увеличивает скорость нагрева. [c.254]

    Сначала ограничим расплав на нижней пластине с помощью боковых стенок, создав мелкий прямоугольный канал шириной W (рис. 10.7). Пусть движущаяся верхняя пластина скользит по каналу с постоянной скоростью в направлении z вдоль канала. При условии малой глубины канала HIW < 1) уравнения, полученные в предыдущем разделе, справедливы и для этой новой геометрии канала. Если это условие не выполняется, то необходимо модифицировать эти уравнения (чтобы принять в расчет градиенты скорости в направлении х), хотя основные выводы останутся теми же. Затем ограничим канал по длине, закроем вход и выход, образовав на входе питающее устройство, а на выходе формующее устройство (рис, 10,8). Ясно, что если обеспечить непрерывную подачу материала при низком давлении на входе, то устройство будет перекачивать расплав, повышая его давление до Р , и экструдировать его через установленную на выходе головку. Таким образом, почти создан генератор давления или насос, только верхняя пластина все еще является бесконечной . Избавиться от этого можно путем замены ее, например, неограниченной лентой. Такое решение, однако, вряд ли может иметь практическое воплощение для канала, заполненного горячим вязким расплавом. Более подходящий способ решения этой проблемы состоит в том, чтобы изогнуть канал в направлении z по дуге окружности. Тогда вращающийся цилиндр, надетый поверх искривленного канала, будет работать как неограниченная пластина, как это показано на рис, 10,9. Искривление только незначительно повлияет на профиль скоростей (фактически улучшая способность создавать давление) без искажения самой идеи .  [c.318]

    Заканчивая анализ поперечных срезов (рис. 12.8), рассмотрим другие детали физических процессов, протекающих в винтовом канале червяка. Относительное движение поверхности цилиндра, направленное поперек винтового канала, увлекает за собой расплав и перемещает его к заполненному расплавом участку канала,находящемуся у толкающей стенки, одновременно создавая поперечный градиент давления и циркуляционное течение. Это гидродинамическое давление несомненно способствует дроблению твердой пробки полимера, расположенной у передней стенки винтового канала. А так как расплавленный полимер непрерывно удаляется из пленки расплава за счет относительного движения цилиндра, то твердый слой должен начать двигаться по направлению к поверхности цилиндра. В то же время нерасплавленный полимер скользит по витку вследствие этого ширина пробки, движущейся по каналу, непрерывно уменьшается до тех пор, пока пробка, наконец, полностью не исчезнет. С другой стороны, в данном сечении винтового канала размеры пробки остаются во времени неизменными. Таким образом, налицо все элементы установившегося процесса плавления, сопровождающегося удалением расплава вследствие вынужденного течения (см. разд. 9.8). Более того, подобный механизм плавления может существовать только в тонкой пленке расплава у поверхности цилиндра. Учитывая также существенное различие между интенсивностью плавления без и с удалением образовавшегося расплава, мы приходим к выводу, что плавление на сердечнике червяка (даже при проникновении расплава под твердый слой) так же, как взаимодействие между слоями расплав- [c.430]

    Да с Л", которое изменяло бы соотношение между реакциями (1) и (2). После раздавливания ампулы с Хер4 начальная реакция протекала почти мгновенно, затем следовал меньший тепловой эффект, — вероятно, от 1 до 3% от общего — с градиентом, непрерывно уменьшающимся в течение примерно 15 мин. К этому времени достигалась такая скорость изменения температуры в калориметре, которая характерна для непрерывных реакций, протекающих очень медленно. Возможно, что меньший тепловой эффект обусловливается реакцией кислорода и иода, скорость которой уменьшается и становится равной почти нулю по мере того, как уменьшается кислотность раствора и парциальное давление кислорода. Это не должно привести к ошибке, если отношение кислорода к иоду в конце основных калориметрических измерений то же самое, что и определенное позднее. [c.173]

    Мы считаем движение по градиенту непрерывным процессом, так что параметр i можно отождествить с временем. Уравнения (12.3) определяют движение по градиенту со скоростью V, пропорциональной величине градиента (/с — коэффициент пропорциональности). В самом деле, умножая первые п уравнений (12.3) на g jdxЧdt, последнее на K d k/dt, суммируя первые п уравнений и вычитая последнее, получим [c.144]

    В одной из первых теорий электрэпроводности растворов электролитов— Б гидродинамической, или классической, теории — прохождение тока рассматривалось как движение жестких заряженных шаров-ионов под действием градиента электрического потенциала в непрерывной жидкой вязкой среде (растворителе), обладающей определенной диэлектрической проницаемостью. Конечно, ионы перемещаются и в отсутствие электрического поля, но это беспорядочное тепловое движение, результирующая скорость которого равна нулю. Только после наложения внешнего электрического поля возникает упорядоченное движение положительных (по направлению поля) и отрицательных (в противоположном направлении) ионов, лежащее в основе переноса тока. Скорость такого направленного движения ионов определяется электрической силой и силой трения. В начальный момент на ион действует только первая сила, представляющая собой произведение заряда иона qi на градиент потенциала grad ijj  [c.118]

    Градиент целевой функции. Среди методов, применяемых для решеиия задач нелинейного программирования, значительное место занимают методы поиска решения, основанные на анализе производных оптимизируемой фуикции. Предполагая в дальнейшем (там, где это специально не оговорщю), что анализируются только непрерывные дифференцируемые функции R (х), остановимся на свойствах этих функций, которые можно использовать для анализа нх поведения, [c.485]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Управление, процессом. Контроль за работой колонны для экстрах -ционной перегонки обычно затруднителен, так как температурный градиент, устанаиливающийся в колош[В, не соответствует тому процессу разделения, которое должно производиться. Обычно контроль ведется по материальному балансу на основе ежечасного отбора проб для анализов. В некоторых случаях для производства непрерывного анализа с целью управления процессом в колонне применяют спектральные приборы. [c.118]

    Особые сложности возникают при регулировании температуры обогревающего кожуха колонны в зависимости от температуры внутри нее. В разд. 7.7.3 были описаны различные способы тепловой изоляции колонн. Вследствие того, что при непрерывной ректификации, и особенно при ректификации многокомпонентных смесей температура внутри колонны постоянно, а часто и скачкообразно повышается, необходимо соответствующим образом регулировать мощность нагрева электроспиралей. При этом из-за тепловой инерции электроспиралей между температурой внутри колонны и температурой обогревающего ее кожуха может возникать градиент до 30 °С. Обеспечивая автоматическое регулирование мощности электроспиралей, удается существенно уменьшить этот температурный градиент. В этом случае в качестве температурных датчиков применяют воздухонаполненные термометры и термопары, или термометры сопротивления. При регулировании температуры с помощью термопар (см. рис. 343), установленных внутри колонны, а именно в ее верхней части и несколько выше куба, они воздействуют на показывающий прибор, который подает через короткие промежутки времени импульсы на коммутатор. При этом электрический контур, который включает электронагреватель кожуха колонны, замыкается [28]. В качестве температурных датчиков автоматических регуляторов мощности электронагревателей кожуха по температуре внутри колонны используются также и контактные термометры Хутла [29]. [c.436]

    Безградиентный проточно-циркуляционный метод осуществляют в условиях практического отсутствия в реакционной зоне перепадов концентраций, температур, скоростей. Принцип его применительно к изучению кинетики гетерогенных каталитических реакций был впервые предложен М. И. Темкиным, С. Л. Киперманом и Л. И. Лукьяновой [25]. Перемешивание в проточно-циркуляционной системе достигается применением интенсивной циркуляции реак-циолной смеси через катализатор в замкнутом объеме при непрерывном поступлении и выведении газового потока, причем количество циркулирующего газа должно значительно превышать количество вновь вводимого исходного газа. Циркуляция с большой скоростью происходит с помощью насосов механических, поршневых или электромагнитных, мембранных и других [2,3], Циркуляционный контур, состоящий из электромагнитного насоса (производительность 600—1000 л/ч), клапанной коробки двойного действия 2 и реактора 1 представлен на рис. 120. Высокая линейная скорость реакционной смеси в цикле и малая степень превращения обусловливают минимальные градиенты концентраций и температур, при этом слой можно рассматривать, как бесконечно малый, а реактор — как аппарат идеального смешения. Следовательно, скорость [c.286]

    При течении газа в сужающемся винтовом канале соплового ввода от сечения к сечению происходит непрерывное перераспределение скоростей и общий их рост, возникают как продольные, так и поперечные градиенты давления центробежные силы создают повышенное на вогнутой (внешней) и пониженное на выпуклой (внутренней) поверхностях канала давления. В результате поперечного перепада давления возникает движение частиц к вогнутой стенке, в сторону плоских стенок и по ним в направлении к выпуклой стенке. Поскольку Ь Ь, вторичные движения частиц газа по вогнутой и выпуклой стенкам затруднительны вторичные движения, характерные для условия Ь >> Ь [16], вырождаются в вихри, образующиеся по углам плоских и выпуклых стенок вихри вращаются в противоположных направлениях (рис. 1.19). Кроме того, как показывает анализ теоретических и аналитических исследований, данный в работе [24] для таких сечений криволинейного канала, при обтекании вогнутой поверхности с потерей устойчивости создаются условия для возникновения макровихрей Тей-лора-Гертлера с осями, совпадающими с общим направлением потока, и с чередующимся левым и правым вращением. Кинетическая энергия потока в данном случае теряется из-за значительной неравномерности полей скоростей, на компенсацию потерь из-за трения во вторичных течениях и на создание вихрей. [c.36]

    Количество чистого растворителя, подаваемого на разных ступенях очистки, должно быть одинаковым и соответствовать выбранной кратности растворителя к сырью.Температура первой ступени экстракции соответствует температуре низа экстракционной колонны при непрерывном противоточном процессе, а температура последней ступени (третьей или пятой) — температуре верха этой колонны. Разность между температурами последней и первой ступеней экстракции соответствует температурному градиенту противоточной экстракционной колонны. Вторую ступень при трехступенчатой экстракции проводят при температуре, средией между температурами первой и третьей ступеней (соответствующей температуре в середине колонны). Очистку проводят в экстракторах периодического действия (см. рис. 70). [c.186]

    Как уже указывалось выше, причина сравнительно низкого коэффициента микроохвата гидрофильных однородных пластов — капиллярные силы, в которых из-за преимущественного проникновения воды в мелкие поровые каналы крупные поры остаются неохваченными заводнением. Следовательно, увеличивая в породах рассматриваемого типа гидродинамический градиент давления, т. е. скорость нагнетания воды, можно достигнуть определенного увеличения безводной и конечной нефтеотдачи пласта. Указанное увеличение нефтеотдачи происходит в результате выравнивания скоростей проникновения воды в поровые каналы разного диаметра. При непрерывном увеличении градиента давления теоретически можно достигнуть условия, при котором скорости движения нагнетаемой воды в крупных поровых каналах будут намного превышать скорости фильтрации в мелких иоровых каналах. Иначе говоря, непрерывное приращение скорости нагнетания воды в микронеоднородном пласте может привести к снижению безводной нефтеотдачи. [c.92]

    С гидродинамической точки зрения такой тип неоднородности для изучения общих закономерностей фильтрации несмешивающихся жидкостей можно свести к двум видам к однородному иласгу, если указанные неоднородные участки хаотично разбросаны ио всей площади или ио толщине пласта, и,к слоистому, если эти участки ориентированы таким образом, что образуют как бы несколько непрерывных каналов разных фильтрационных свойств. В первом случае влияние местной неоднородности на интегральные показатели заводнения должно быть сведено до минимума, учитывая неизмеримо большие размеры месторождения и расстояния между нагнетательными и добывающими скважинами. Во втором же случае основные, особенности заводнения можно определить на, моделях слоистых пород. Однако при постановке опытов на образцах породы с равномерно распределенными участками различной проницаемости нельзя пользоваться предельными величина,ми условий моделирования, рекомендованными в работе Д. А. Эфроса, поскольку они установлены для микронеоднородных пластов, в которых формирование-зоны активного капиллярного проявления (стабилизированной зоны) обусловлено различием поровых каналов. Физическая сущность условий приближенного моделирования, предложенных Д. А. Эфросо,м, в основном сводится к тому, чтобы при заданном градиенте давления свести отношение длины зоны капиллярного обмена к длине модели до пренебрежимо малого значения, ири которо,м стабилизированная зона практически перестает оказывать влияние на показатели заводнения. Это основное положение-приближенного моделирования должно оставаться в силе и при постановке опытов на моделях с другими видa и неоднородности и, в частности, на образцах породы с локальной неоднородностью. Но для нород с таким типом неоднородности необходимо-определить предельные значения критериев гидродинамического подобия, принимая при это,м в качестве характерного параметра пористой среды не средний размер пор, а средний размер неоднородных участков, слагающих исследуемый пласт. Аналогичные рассуждения справедливы также для пород с локальной неоднородностью, которые можно с гидродинамической точки зрения трансформировать в трубки тока, простирающиеся от линии нагнетания до линии отбора жидкости. [c.108]

    При местной закрутке потока благодаря силам вязкости происходит непрерывное изменение структуры вращающегося потока по длине трубы. Центробежные силы оттесняют поток к стенке трубы, что приводит к изменению поля скоростей и градиента статического давления по радиусу трубы. Закрученное движение в трубах характеризуется еще одним важным параметром. В трубах имеет место течение, аналогичное обтеканию вогнутой поверхности, при изменяющемся радиусе ее кривизны , зависящей от угла ввода потока через закручивающее устройство. Известно, что около вогнутой поверхности возникают вихри Тейлора-Гёртлера и существенно усиливаются тепло- и массообменные процессы. [c.13]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]

    Для обеспечения максимального градиента кош1ентрации экстрагируемых веществ процесс ведут методом противотока при непрерывной подаче растворителя. При выборе экстрагента он должен удовлетворять определенным требованиям быть дешевым, легко регенерироваться, обладать низкой теплоемкостью, малой теплотой испарения, не оказывать корродирующего действия на аппаратуру, быть малотоксичньш и др. [c.20]

    В заключение следует отметить, что вязкостные функции, определяемые при реологических экспериментах, вовсе нельзя отождествлять со свойствами расплава, которые определяют его поведение при переработке. Это в особенности справедливо для встречающихся при переработке быстрых течений, которые не являются вискозиметрическими течениями (они имеют больше одной составляющей скорости и самые различные градиенты скорости) и неизотермичны. Хотя в целом течение может казаться установившимся, с позиций лагранжевых координат элементарный объем полимерного расплава, движущийся в потоке в перерабатывающем оборудовании, непрерывно попадает в быстро изменяющиеся ситуации. Поэтому его реакция оказывается принципиально отличной от реакции, наблюдаемой в установившихся течениях вискозиметрических экспериментов. [c.176]

    В пластицирующем экструдере можно выделить два самостоятель ные участка транспортировки. Первый участок расположен непо средственно за областью плавления здесь можно применять модели описанные в предыдущем разделе, без какой-либо модификации Кроме того, транспортировка расплава происходит в слое расплава который граничит с твердой пробкой. На этом участке ширина слоя по мере продвижения по каналу увеличивается. Более того, непрерывно увеличивается также и массовый расход находящегося перед толкающей стенкой расплава в результате притока расплава из пленки. Обе эти величины, а также средняя температура пленки расплава могут быть рассчитаны на основании модели плавления. Следовательно, модель движения расплава в зоне дозирования можно использовать для приблизительного расчета локального градиента давления и изменения температуры в пределах малых шагов расчета, используя средние значения локального расхода и локальную ширину слоя расплава [2, 27]. На рис. 12.20 представлены результаты таких расчетов. При этом предполагают, что процесс плавления оказывает сильное влияние на процесс нагнетания расплава, а возможное влияние последнего на плавление пренебрежимо мало. В действительности расплав, находящийся перед пробкой, сжимает ее и создает на ее поверхности тангенциальные напряжения, которые наряду с вязким трением в пленке расплава и силами трения, действующими у сердечника червяка и винтового канала, определяют распределение напряжений в твердой пробке передней стенки. Попытки такого анализа взаимодействия двух фаз, которые в принципе могут позволить прогнозировать деформационное поведение пробки, ее ускорение и разрушения, можно найти в работах [13, 28]. [c.452]

    Как отмечалось в гл. 9, для описания затвердевания расплава, сопровождающегося кристаллизацией, можно использовать выражение (14.1-9) и для поведения расплава, и для кристалчизации. В первом случае следует учитывать выделение тепла, а во втором — теплопередачу на поверхности. Выражение (14.1-9) можно использовать и для обеих фаз сразу, даже если Ср, р и во всем температурном диапазоне непрерывно изменяются. Теплопередачей вдоль направления течения можно пренебречь, поскольку градиенты в этом направлении обычно меньше, чем в перпендикулярных направлениях. В данном случае выражение к д Т1дх обращается в нуль и достаточно использовать только два первых условия выражения (14.1-10). Схема числового решения такой задачи при различных граничных условиях подробно описана в разд. 9.4. [c.538]

    ИзучеЕ1ие эффектов ассоциации одноименных (пар-твердый конденсат) или разноименных (пар-газ) молекул привело к получению соответствующих зависимостей, Показано, что при конденсации пара в жидкость из парогазовых смесей скорость конденсации резко уменьшается с повышением содержания газа. Рассмотрение процесса конденсации во всей его сложности с учетом молекулярных взаимодействий дает возможность выявить особенности конденсации как в жидкое, так и твердое состояние. Общим является то, что обмен энергией между частицами в объеме и на поверхности происходит в состоянии ассоциации. Можно предположить, что фазовые превращения, например пар-жидкий конденсат, будут растянуты во времени, так как некоторое повышение температуры смеси при конденсации может привести к разрушению только образовавшихся кристаллических решеток за счет собственной энергии фазового превращения. У определенной части молекул кинетическая энергия может становиться больше потенциальной энергии взаимодействия, и эта часть молекул вновь испаряется с поверхности конденсации. В этих случаях процесс теплообмена по физической сущности представляет собой обмен энергией между частицами, находящимися в различном энергетическом состоянии. Такой обмен энергией между частицами обычно называют переносом тепла. При конвективном теплообмене поток тепла вызывается наличием градиента температуры. Однако даже при отсутствии температурного градиента за счет хаотического теплового движения молекул среды непрерывно происходит хаотический перенос тепла. [c.100]


Смотреть страницы где упоминается термин Градиент непрерывный: [c.34]    [c.174]    [c.360]    [c.587]    [c.100]    [c.503]    [c.261]    [c.334]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.145 , c.175 , c.176 , c.357 ]




ПОИСК







© 2024 chem21.info Реклама на сайте