Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза в клеточных стенках

    В организме высших растений целлюлоза расщепляется ред- 0 (если не считать распада, обусловленного деятельностью микробов). Два известных исключения из этого правила касаются клеток в отделительной зоне листа, образующейся перед сбрасыванием листьев, и сосудов ксилемы, у которых поперечине стенки растворяются. В отделительной зоне листа фермент целлюлаза разрушает клеточные стенки, расщепляя содержащуюся в них целлюлозу до отдельных мономерных единиц, т. е. до глюкозы. Клеточные стенки, ослабленные этим процессом, в конце концов разрываются, и лист сбрасывается. [c.148]


    При исследовании других озимых и яровых сортов злаков наблюдалось снижение общего веса клеточных стенок озимых сор-Лв и непрерывное увеличение веса яровых. Почти во всех случаях происходило накопление ксилозы й арабинозы в стадии полной спелости и снижение содержания глюкозы и галактозы. [c.312]

    Целлюлоза — главный компонент древесины как хвойных, так и лиственных пород, занимающий примерно ее половину. Целлюлоза представляет собой линейный полимер с высокой молекулярной массой, построенный исключительно из остатков, Р-О-глюкозы. Благодаря своим химическим и физическим свойствам, а также надмолекулярной структуре она выполняет функцию основного структурного компонента клеточных стенок растений. [c.18]

    Синтезированная из глюкозы в растительной клеточной стенке целлюлоза не растворяется в обычных растворителях. Для изучения же ее молекулярных свойств необходим перевод в раствор. Растворение также требуется для осуществления гомогенных реакций ОН-групп и для структурных превращений. [c.55]

    Наблюдая за изменениями в составе клеточных стенок в ходе развития хлопкового волокна, установили, что максимальное количество остатков галактозы, маннозы, рамнозы, арабинозы, фукозы, уроновых кислот и нецеллюлозной глюкозы соответствует концу образования первичной стенки или началу образования вторичной стенки. До конца развития волокна возрастают лишь абсолютные количества остатков ксилозы и глюкозы, входящей в состав целлюлозы. [c.187]

    Производство кормовых дрожжей на гидролизатах или сульфитных щелоках основано на выращивании дрожжеподобных микроорганизмов в питательной среде, состоящей главным образом из моносахаридов (глюкозы, маннозы, галактозы, ксилозы, арабинозы) и уксусной кислоты, получаемых в результате гидролиза полисахаридов, которые содержатся в клеточных стенках различных растительных отходов. [c.335]

    Под влиянием внешних условий роста не только может варьировать толщина клеточной стенки, но могут возникать также определенные различия в субмикроскопическом строении клеток и их химическом составе. Например, состав ГМЦ и содержание других химических компонентов в клеточных стенках — в реакционной древесине, т. е. в древесине, образованной под влиянием механического воздействия, — отличаются от их содержания и состава в нормальной древесине [54]. Полисахариды тяговой древесины в древесине бука содержат больше галактозы (6,6%) и глюкозы (73,5%) по сравнению с нормальной (1,6 и 57,4% соответственно). В то же время ксилозы в гидролизатах полисахаридов тяговой древесины меньше (17,3%), чем в нормальной (35,1%). Характерным свойством клеточной стенки тяговой древесины является то, что она изнутри покрыта желатиноподобным слоем [8, 36], обозначаемым О или 4. Предполагается, что этот слой состоит почти целиком из целлюлозы. По-видимому, механизм [c.42]


    Одинцов П. Н., Милютина С. В. Набухание клеточных стенок еловой древесины в серной кислоте и в кислых растворах глюкозы // Изв, АН Латв, ССР, — 1950, — № 9, — С, 33—50, [c.435]

    Полисахариды. Запасные углеводы микроорганизмов еще мало изучены. У некоторых микробов при помощи цветной реакции с раствором Люголя удается идентифицировать крахмал (синяя окраска) или гликоген (коричневая окраска). Все запасные полисахариды, в отличие от полисахаридов клеточной стенки, образуются из а-О-глюкозы молекулы глюкозы связаны между собой 1,4-а-гликозидными связями и многократно сшиты между собой. [c.32]

    Целлюлоза - главный компонент растений, представляющий собой линейный полимер с высокой молекулярной массой, построенный из остатков р-О-глюкозы Благодаря своим химическим и физическим свойствам она выполняет функцию основного структурного компонента клеточных стенок растений [c.103]

    Целлюлоза находится в растениях в основном в виде волокон, являясь основным компонентом и опорным материалом клеточных стенок растения, который придает механическую прочность содержащим целлюлозу органам Наиболее чистая целлюлоза содержится в семенных волокнах хлопчатника (92-95%), волокнах льна, рами, джута (75-90%), в древесине (40-50%), камыше, злаках, подсолнечнике (30-40%) По своему составу целлюлоза является гомополисахаридом, состоящим из фрагментов /5-/)-глюкозы [c.791]

    Целлюлоза (клетчатка, вещество клеточных стенок растений ). Истинной клетчаткой или целлюлозой называют совершенно определенный в химическом отношении углевод, который при полном гидролизе целиком распадается на глюкозу. Углевод этот чрезвычайно широко распространен в растительном мире и является основным веществом, из которого строится остов растений. Ботаники часто используют понятие клетчатка несколысо шире, распространяя его и на другие участвующие в построении клеточных стенок полисахариды— маннаны, галактаны и пентозаны, которые наряду с глюкозой содержат также маннозу, галактозу и пентозы. Однако эти комплексные углеводы не используются в качестве чисто строительного материала в определенные периоды жизни растения они могут вновь ассимилироваться и, следовательно, являются резервными питательными веществами. [c.460]

    Целлюлоза или клетчатка (QHiq05) (где и=6—12 тыс.) — полисахарид клеточных стенок растений. Она состоит из остатков Р-глюко-пиранозы и имеет р-1,4-глюкозидные связи. При гидролизе она образует глюкозу. Это промышленный процесс, однако выделять и очищать глюкозу трудно, продукт гидролиза нейтрализуют, подвергают сбраживанию и отгоняют этиловый ( гидролизный ) спирт. [c.91]

    Пентозаны, пектиновые вещества, гумми. В зерне содержатся гемицеллюлозы (полуклетчатки), состоящие из гек-созанов (маннана, галактана, глюкозана) и пентозанов (ксплана, арабана), наряду с клетчаткой участвующие в формировании клеточных стенок. Пентозаны являются доминирующей составной частью гумми (слизей). [c.18]

    МАННАНЫ, прир полисахариды, в составе к-рых остаток D-маннозы является единственным или преобладающим моносахаридом Встречаются в высших и низших растениях и грибах, характеризуются большим разнообразием струк тур, физ -хим св-в и биол ф ций Линейные -I->4-M (см ф-лу), подобно целлюлозе, не раств в воде и в качестве структурных полисахаридов входят в состав клеточных стенок нек-рых высших растений и водорослей, они также участвуют в построении защитных оболочек плодов и семян, напр скорлупы орехов Химически близкие линейные глюкоманнаны (содержат наряду с маннозой остатки глюкозы) [c.643]

    Исследователи [46] пытались также выяснить фазовое состояние ксилоуронидов в клеточных стенках паренхимных тканей древесины березы. Для этой цели из измельченной древесины березы (Betula verru osa) удаляли лигнин хлоритом натрия в уксуснокислой среде в присутствии водного раствора этанола. Полученную мацерированную холоцеллюлозу промывали 50%-ным этанолом на металлической сетке с размерами отверстий 40 мк. В этих условиях через отверстия сетки отмывались только клетки древесной паренхимы, содержащие зерна крахмала. Крахмал удаляли обработкой клеток 0,1 %-ным раствором а-амидазы в 0,01М фосфатном буфере при 40° С в течение 8 ч. Количественный гидролиз полученных паренхимных клеток дал следующие результаты (%) галактозы 3,6, глюкозы 35,7, маннозы 2,0, арабинозы 0,9, ксилозы 57,8. Таким образом, в клеточных стенках паренхимных тканей древесины березы после удаления лигнина обнаружено более 70% [c.323]

    Образование галактозы из глюкозы должно проходить путем вращения четвертого углеродного атома. Последующее окисление шестого углеродного атома этих моносахаридов до карбоксила приводит к возникновению соответствующих уроновых кислот, из которых глюкуроновая входит в состав ряда гемицеллюлозных полисахаридов, галактуроновая образует пектиновые вещества и маннуроновая входит в состав клеточных стенок водорослей. При декарбоксилировании этих кислот образуются соответствующие пятиатомные моносахариды ксилоза и арабиноза, а при восстановлении шестого углеродного атома маннозы до метильной группы — рамноза. [c.331]


    Толстая стенка растительной клетки (рис. 1-3) устроена необычайно сложно [ИЗ—116]. Благодаря ее сложному строению растения обладают прочностью и жесткостью, а их клетки способны к быстрому удлинению в период роста. Норткот [ИЗ] сравнил строение стенки растений с фибраглассом — пластиком, армированным стекловолокном. Так, в стенке клетки находятся микрофибриллы, состоящие из целлюлозы и других полисахаридов, которые погружены в матрикс, также состоящий в основном из полисахаридов. На ранних стадиях роста зеленых растений закладывается первичная клеточная стенка, содержащая свободно переплетенные целлюлозные волокна диаметром приблизительно 10 нм, центральная часть которых (- 4 нм) имеет кристаллическую структуру. Такие целлюлозные волокна содержат 8000—12 000 остатков глюкозы. [c.395]

    Биосинтез полисахаридов матрицы еще менее изучен, чем биосинтез целлюлозы. Обнаруженные в растениях взаимопревращения НДФ-сахаров позволили предложить схему их возможной биосинтетической связи с полисахаридами (рис. 11.9). Согласно этой схеме, глюкоманнан так же, как и целлюлоза, образуется из гуанозиндифосфатпроизводных, а пектины и остальные гемицеллюлозы - из уридинднфосфатпроизводных. Следует отметить, что при биосинтезе крахмала - резервного полисахарида растений используется АДФ-О-глюкоза. Такое разъединение нуклеозидцифос-фатных производных моносахаридов в общих чертах согласуется с порядком формирования структурных полисахаридов. Пектиновые вещества образуют истинную срединную пластинку, на которую начинают откладываться целлюлозные микрофибриллы, создавая каркас слоев клеточной стенки. Этот каркас покрывается главными цепями макромолекул полиса- [c.337]

    Многие из указанных выше эффектов можно прекрасно проиллюстрировать на примере механизмов связывания и катализа, осуществляемых ферментом лизоцимом. Лизоцим занимает особое место в истории энзимологии, поскольку его трехмерная структура была первой нз структур белков, определенных методом рентгеноструктурного анализа [134]. Это маленький белок, состоящий из одной полипептидной цепи длиной в 129 аминокислотных остатков, катализирует гидролиз гликозидных связей углеводного компонента клеточной стенки бактерий (как часть защитного механизма против бактериальной инфекции). Природным субстратом лизоцима является чередующийся сополимер (86) Л -ацетил-[5-0-мурамовой кислоты (NAM) и Л -ацетил-р-й-глюкоз-амина (NAG), связанных [i-1-> 4-гликозидными связями, однако большая часть работ по изучению механизма была проведена на более простых субстратах. Так, поли-Л -ацетилглюкозамин также гидролизуется ферментом, однако эффективность этой реакции существенно зависит от размера субстрата и трисахарид (NAG)3 фактически является ингибитором лизоцима. Сравнение трехмерных структур фермента и комплекса последнего с (NAG)a показывает, что трисахарид связывается во впадине фермента. Такое сравнение позволяет детально исследовать связывание трех моно-сахаридных звеньев (NAG)a в участках А, В и С фермента, которое осуществляется посредством комбинации гидрофобных рччимодействий и водородных связей. Как отмечалось при об- [c.528]

    Обнаружение кето-кислот позволяет предположить функционирование цикла лимонной кислоты (см. схему П). Однако шикимовая кислота, по-видимому, не использовалась в качестве конкурирующего вещества в росте L. lepideus на меченой глюкозе, а фосфорилированная шикимовая кислота была найдена в культуральной среде. Поэтому можно предположить, что организм неспособен непосредственно фосфорилировать свободную шикимовую кислоту. Вероятно, свободная кислота либо не может вступать на путь метаболизма, либо неспособна проникать через клеточную стенку. п-Оксифенилпировиноградная кислота может рассматриваться как предшественница л-оксикоричной кислоты. [c.788]

Рис. 9. Микрофотография срезов клеток мицелия фруктозного варианта A t. roseoflavus var. roseofungini (ув. 75000) а — гифы культуры на СР-1 с глюкозой б — на овсяном агаре в — культура на СР-1 с глюкозой вокруг клеток нидно большое количество трубочек, лежащих в различных плоскостях г — тонкая структура отдельных трубочек при негативном контрастировании 0,5% раствором уранилацетата (ув. 150 000) — клеточная стенка ЦМ — цитоплазматическая мембрана М — мембранные образова- иия ОГ — осмиефильные гранулы Н — нуклеоид В — вакуоль Т — трубочки (Черни и др., 1972) Рис. 9. Микрофотография срезов клеток мицелия фруктозного варианта A t. roseoflavus var. roseofungini (ув. 75000) а — гифы культуры на СР-1 с глюкозой б — на овсяном агаре в — культура на СР-1 с глюкозой вокруг клеток нидно <a href="/info/472531">большое количество</a> трубочек, лежащих в различных плоскостях г — <a href="/info/17117">тонкая структура</a> отдельных трубочек при <a href="/info/510136">негативном контрастировании</a> 0,5% <a href="/info/667358">раствором уранилацетата</a> (ув. 150 000) — <a href="/info/98958">клеточная стенка</a> ЦМ — <a href="/info/278145">цитоплазматическая мембрана</a> М — мембранные образова- иия ОГ — осмиефильные гранулы Н — нуклеоид В — вакуоль Т — трубочки (Черни и др., 1972)
    Ряд полисахаридов проявляет свойства стереорегулярных полимеров и может с большей или меньшей легкостью образовывать квази-кристаллические структуры. В этом случае применение рентгеноструктурного анализа дает сведения о конформации полимерной цепи, способе упаковки полимерных цепей в кристаллических областях и размерах элементарной ячейки кристалла. Исследования проводят либо с природными образцами полисахаридов с высокой степенью ориентации молекул (например, кристалличность целлюлозы в клеточных стенках водоросли Valonia ventri osa приближается к 100%), либо с пленками полисахаридов, ориентация молекул в которых достигается наложением механического напряжения. С помощью рентгеноструктурного анализа установлено, например, что полимерная цепь целлюлозы имеет линейную конфор-мaцию с повторяющимся звеном длиной 10,3 А, состоящим из двух остатков глюкозы, повернутых друг относительно друга на 180°. Сходные [c.516]

    Полисахариды зеленых водорослей. Зеленые водоросли по ряду признаков (роль целлюлозы в строении клеточной стенки , крахмалоподобные полисахариды как энергетический резерв ) стоят ближе к наземным растениям, чем красные или бурые. Однако они также содержат ряд сульфированных полисахаридов " , как правило, весьма сложных уже по моносахарндному составу (например, слизь из Ulta ladu a содержит D-глюкуроновую кислоту, D-ксилозу, -рамнозу и D-глюкозу Установление строения этих сложных полисахаридов еще далеко от завершения. [c.539]

    Производство пищевой или медицинской кристаллической глюкозы из одревесневших клеточных стенок растений основано на гидролизе содерл ащейся в них целлюлозы до глюкозы с последующим выделение.м ее из полученного гидролизата в кристаллическом виде. [c.379]

    Макромолекулы, составляющие основную массу сухих веществ клетки, — полимеры, построенные из мономерных единиц. Исключением служат липиды, не являющиеся полимерами, так как молекулы в них не соединены между собой ковалентными связями. Углеводные полимеры построены на основе повторяющихся единиц одного, двух или более типов, например, запасной полисахарид гликоген, построенный из остатков глюкозы, или пептидогликан клеточной стенки, образованный чередованием М-ацетилглюкозамина и Ж-ацетилмурамовой кислоты. В клетке углеводные полимеры представлены часто одним видом молекулы (см. табл. 9). [c.82]

    Второй тип ксилоглюкаиов был выделен из культуральной суспензии клеток сикомора и фасоли, муки из семян рапса, оболочек семян рапса, бобов сои, культуральной суспензии клеток соевых бобов и других растений. Этот тип ксилоглюкаиов признан как компонент клеточных стенок. Он содержит фукозу в сочетании с глюкозой, ксилозой и галактозой. В то время как Структуры кси-логлюканов двудольных были исследованы детально, ксилоглюканы однодольных изучены недостаточно. [c.105]

    Виноградные ягоды, а также сусло и вина содержат малоизученные ГМЦ. Они оказывают определенное влияние на качество и технологию произаодства вин. Среди ГМЦ наиболее изучены водорастворимые полисахариды. В их состав входят разнообразные монозы галактоза, глюкоза, манноза, арабиноза, ксилоза, глюкуроновая кислота [59, 60]. В составе клеточных стенок виноградной ягоды найдены арабиногалактан и маннан. Молекулярная масса первого иосле фракционирования колеблется в широком диапазоне — от 7760 до 12 300,второго составляет величину порядка 46 200. Макромолекула этого маннана отличается линейностью строения, состоит из остатков а-О- и р-Д-маннозы. Предиоложено, что основная цепь включает участки, в которых остатки маннозы соединены (1-связями (1—>-3) и (1—>-6), а боковые сформированы. из остатков а-/)-маннозы, соединенных с маниоииранозами основной цепи связью (1— -б). Изучена [59] динамика изменения ГМЦ. в процессе созревания винограда и производства различных вин. [c.113]

    Гемицеллюлозы тесно связаны с целлюлозой в клеточной стенке Основными звеньями гемицеллюлозы являются пять нейтральных сахаров гексозы (глюкоза, манноза, галактоза) и пентозы (ксилоза, арабиноза) Некоторые гемицеллюлозы содержат звенья уроновых кислот Молекулярные цепи гемицеллюлозы намного короче цепей целлюлозы и часто разветвлены [c.103]

    Толщ,ина клеточной стенки дрожжей сравнима с диаметром небольших бактерий. В клеточную стенку дрожжей в основном входят полисахариды, состояш,ие из глюкозы (Г) и маннозы (М). У Sa haromy es erevisiae клеточная стенка более чем на 80% состоит из двух полисахаридов - глюкана и маннана в соотношении 1 1. [c.21]

    Другие особенности полисахаридов - результат химических связей, образуемых мономерами с фосфатными остатками и т.д. Полимеры и клеточные стенки приобретают при этом новые свойства. Несмотря на изменчивость, у грибов известны группоспецифичные особенности строения клеточной стенки. Она всегда содержит несколько типов полисахаридов. У почкующихся клеток всех классов грибов здесь высока доля маннозы, тогда как в гифах больше нейтральных моносахаридов, например, фукозы (метилпентоза), галактозы или глюкозы, а также белка. В различных количествах наряду с собственно структурными элементами клеточной стенки как включения в ней обнаружены меланины, растворимые сахара, пептиды, аминокислоты, фосфаты и другие соли. [c.24]

    ЦЕЛЛЮЛОЗА ж. Структурный полисахарид, неразвет-влённый полимер В-глюкозы главная составная часть клеточных стенок, составляет 50-99",, массы растений используется в текстильной, микробиологической промышленности, для производства бумаги, плёнки и др. [c.488]

Рис. 19-6. Схема строения молекулы гемицеллюлозы из клеточной стенки типичного цветкового растения. Целлюлозоподобный остов молекулы состоит из остатков глюкозы и присоединен в клеточной стенке водородными связями к поверхности целлюлозной микрофибриллы. В данном случае изображен ксилоглюкан, в котором к глюкозиым единицам осевой цепи присоединены остатки ксилозы компонентами боковых олигосахарндных цепей могут быть и другие сахара, напрнмер галактора и фукоза. Рис. 19-6. <a href="/info/659907">Схема строения молекулы</a> гемицеллюлозы из <a href="/info/98958">клеточной стенки</a> типичного <a href="/info/1281987">цветкового растения</a>. Целлюлозоподобный остов <a href="/info/1715170">молекулы состоит</a> из остатков глюкозы и присоединен в <a href="/info/1278945">клеточной стенке водородными</a> связями к <a href="/info/818906">поверхности целлюлозной</a> микрофибриллы. В данном случае изображен ксилоглюкан, в котором к глюкозиым <a href="/info/961156">единицам осевой</a> цепи присоединены остатки ксилозы компонентами боковых олигосахарндных цепей могут быть и <a href="/info/1683399">другие сахара</a>, напрнмер галактора и фукоза.
    Полисахариды клеточной стешш обычно образуются в аппарате Гольджи и выводятся путем экзоцитоза, но из этого правила есть одно важное исключение целлюлоза у большинства растений синтезируется на внешней поверхности клеток с помошью мембраносвязанного ферментного комплекса, субстратом для которого служит соединение сахара с нуклеотидом, вероятно иВР-глюкоза. Новообразованные целлюлозные цепя спонтанно обмдиняют-ся в микрофибриллы, которые затем включаются в сложную структуру клеточной стенки. [c.191]

    Галактокиназа выявлена в препаратах из маша в противоположность гексокиназа, рассмотренной на стр. 121, она катализирует фосфорилирование кислорода альдегидной группы при 1-м атоме углерода. УДФ-глюкозо-пирофосфорилаза получена в частично очищенном виде из проростков маша она, по-видимому, специфична по отношению к глюкозо-1-фосфату. Имеются данные, что значительная часть активности этого фермента связана с клеточными стенками. Галактозо-1-фосфат-урндил-трансфераза катализирует легко обратимый перенос группы урндила между глюкозо-1-фосфатом и галактозо-1-фосфатом. Фермент выделен из животных тканей и из микроорганизмов недавно получены данные о его наличии в корнях сои. УДФ-глюкозо-4-эпимераза найдена в растениях маша подробно она изучена на препаратах, полученных из дрожжей и печени. В присутствии Т2О или НгО метка в нуклеотидах не появляется. Эти данные, а также потребность в НАД указывают на участие окислительно-восстановительного механизма. Однако выделить предполагаемый при действии этого механизма промежуточный продукт уридиндифосфо-4-кетогексозу не удалось. [c.143]


Смотреть страницы где упоминается термин Глюкоза в клеточных стенках: [c.311]    [c.23]    [c.275]    [c.252]    [c.266]    [c.102]    [c.136]    [c.305]    [c.509]    [c.32]    [c.433]    [c.15]    [c.111]    [c.311]    [c.131]   
Биохимия растений (1968) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Стевны

Стейси



© 2025 chem21.info Реклама на сайте