Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Как построены полимеры

    Для получения водорастворимой сульфокислоты полистирола полимер сульфируют трехокисью серы, растворенной в диоксане, который дает с ЗО , неустойчивое комплексное соединение, реагирующее с полистиролом. В процессе сульфирования образуется нерастворимый гель, так как п-сульфокислота полистирола нерастворима в органических растворителях. Полученная таким методом сульфокислота полистирола растворима в воде и содержит по одной сульфогруппе иа каждые две фенильные группы. По данным потенциометрического титрования раствора полимера можно построить кривую, типичную для одноосновной сильной кислоты. [c.368]


    Гомоцепные полимеры - полимеры, основная цепь которых построена из одинаковых атомов (см. Карбоцепные полимеры). [c.398]

    Для расчета коэффициента гидравлического трения гидравлически гладких труб с водными растворами высокомолекулярных полимеров может быть использована формула (2.30). Достаточно надежной расчетной модели для определения коэффициента гидравлического трения Яр в переходной и квадратичной областях гидравлически шероховатых труб с водными растворами высокомолекулярных полимеров построить не удалось. Поэтому значение Яр определяется по формуле [c.63]

    Гомоцепные полимеры. Главные цепи этих полимеров построены из одинаковых атомов. Среди них основное место занимают карбоцепные полимеры, главные цепи которых состоят только из атомов углерода  [c.12]

    Макромолекулы многих полимеров построены из одинаковых многократно повторяющихся групп атомов, называемых звеньями. Если звено обозначить буквой А, то в простейшем случае строение линейной макромолекулы можно представить в виде [c.270]

    Наибольшее значение среди химических добавок имеют различного рода природные и синтетические высокомолекулярные соединения (полимеры), молекулы которых построены многократным повторением тех или иных определенных структурных единиц. Будучи по свойствам и строению весьма разнообразными, полимеры имеют и ряд общих свойств. [c.31]

    Дело в том, что вклад в характерный параметр Qi [см. разд. 1, формулу (1.1)] соответствующего атома определяется путем обработки экспериментальных данных (допустим, температур стеклования) какого-то числа N известных полимерных систем. Тогда N выражений (1.1) для п величин Qi, где п< М (так как число типов атомов, из которых построены полимеры, всегда значительно меньше числа всевозможных разновидностей полимеров, которые можно синтезировать из них), можно рассматривать как избыточную систему линейных уравнений. Искомая система уравнений решается однозначно методом наименьших квадратов. В результате найденные значения Qi. которые связаны с параметрами потенциала взаимодействия, являются усредненными величинами, поскольку в разных полимерных системах /-й атом встречается в окружении различных соседей. [c.26]

    Известно, однако, что мономеры, из которых построены полимеры, хорошо смешиваются друг с другом. Так, стирол и метилметакрилат смешиваются неограниченно, а взаимная растворимость их полимеров составляет доли процента. Аналогичная картина наблюдается для других пар мономеров и соответствующих полимеров. Известно также, что растворимость полимеров в растворителях уменьшается с ростом молекулярного веса, поэтому очевидно, что растворимость полимера в другом полимере также должна зависеть от молекулярного веса. [c.295]


    Теоретические функции распределения по молекулярным массам с экспериментальными данными, получаемыми при фракционировании полимеров, удобно сравнивать графически. Определяя массы фракций и их средние молекулярные массы, строят интегральную кривую распределения по молекулярным массам, т.е. кривую зависимости суммарной массы всех фракций от молекулярной массы. Диаграмму распределения по молекулярным массам в виде непрерывной кривой Л = /(М) можно построить лишь в тех случаях, когда охватывается достаточно широкий диапазон молекулярных масс. Обычно такая кривая имеет 5-образную форму. [c.58]

    После этого краткого введения о том, как построены полимеры, будут описаны структурные факторы, которые более сильно влияют на свойства материала. [c.44]

    Углеводороды представляют собой соединения, включающие только атомы С и Н. Простейшими углеводородами являются линейные полимеры с повторяющейся структурной единицей —СН2—, которые оканчиваются атомами водорода. Другие углеводороды состоят из разветвленных цепей или циклически связанных атомов. Бутан-газ, используемый для отопления и приготовления пищи,-представляет собой тетрамер (четыре структурные единицы). Полимеры, содержащие от 5 до 12 углеродных звеньев, входят в состав бензина одним из примеров является гептан (см. рис. 21-1). Керосин представляет собой смесь молекул, содержащих от 12 до 16 атомов углерода, а смазочные масла и парафиновый воск-смеси цепей с 17 и более атомами углерода. Полиэтилен содержит от 5000 до 50000 мономерных единиц —СН2— в каждой цепи. Существует много других органических цепей, содержащих кроме С и Н еще и другие атомы. Неопреновый каучук, тефлон и дакрон (см. рис. 21-1) являются синтетическими полимерами, а полипептидная цепь, показанная в самой нижней части рис. 21-1, представляет собой полимер, из которого построены все белки-шелк, шерсть, волосы, кол- [c.265]

    В кристаллизующихся полимерах, находящихся при температуре ниже точки плавления, вторичные структуры представлены лентами и лепестками . Наиболее совершенной структурой полимера является единичный кристалл, обладающий минимальной поверхностной энергией кристаллической фазы. Менее совершенными в этом отношении являются сферолитные структуры, из которых могут быть построены ленты и лепестки . [c.64]

    Аргон и Бессонов [161, 162] недавно построили молекулярную модель вынужденной эластичности при сдвиге, которая учитывает вращение молекулярных сегментов под действием внутри- и межмолекулярных сил и систематическое уменьшение числа пар кинк-изомеров в напряженном полимере. Они рассчитали свободную энтальпию активации пары кинк-изомеров в небольшом пучке коллективно действующих молекул  [c.304]

    Природный каучук представляет собой полимер изопрена, и цепь его молекул построена стереорегулярно, соответствуя структуре цис-1,4-полиизопрена [c.333]

    В состав органической части каменных углей входят битумы, гуминовые кислоты и остаточный уголь. Молекулярная структура органической части угля представляет собой жесткий трехмерный полимер нерегулярного строения, содержащий подвижную фазу в виде разнообразных мономолекулярных соединений. Обе фазы построены из отдельных фрагментов, включающих ароматические, в том числе многоядерные и гидрированные системы с алифатическими заместителями и азотсодержащие гетероциклы, соединенные мостиковыми связями С-С, С-О-С, С-8-С и С-МН-С. Степень конденсированности фрагментов (п) зависит от степени углефикации каменного угля. Так, при степени углефикации 78% п = 2, при степени 90% п = [c.156]

    Если макромолекула построена из звеньев, вращение которых вокруг направления соединяющих их связей невозможно, а ориентация этих связей обусловлена ориентацией соседних связей (как, например, в случае лестничных полимеров), то ее характеризуют как предельно жесткую цепь, конформация которой моделируется жестким стержнем. [c.80]

    Гетероцепные полимеры - полимеры, основная цепь которых построена из атомов различных элементов. [c.398]

    Гомополимер - полимер, макромолекулы которого построены из одинаковых звеньев. [c.398]

    Удовлетворительных теоретических представлений о теплопроводности полимеров не существует. Даже для моделей со сферической структурой и для неполярных жидкостей построены лишь очень приблизительные аппроксимации, а для полимеров в твердом состоянии их нет вообще. Физики знают, что в металлах теплопередача осуществляется за счет электронной проводимости, а в диэлектриках — за счет атомных и молекулярных движений. Это же справедливо и для неэлектропроводных жидкостей. [c.119]

    Итак, задача определения критических температур полимеров Тд, Тт и Та) сводится к простым арифметическим операциям сложения и умножения (при этом только нужно правильно подбирать ван-дер-ваальсовы объемы и инкременты, учитывающие дисперсионные и сильные межмолекулярные взаимодействия). Ввиду этого расчет критических температур можно реализовать на простом специализированном компьютере, в память которого можно заложить все константы взаимодействий и ван-дер-ваальсовы радиусы атомов, из которых могут быть построены полимеры. Затем, задаваясь химической формулой повторяющегося звена, концевыми группами и сшивающими агентами, можно рассчитать искомые температуры. Такой специализированный компьютер в сочетании с большими универсальными машинами может решать задачу поиска структур, удовлетворяющих заданным требованиям по Тд, Тт и Та- [c.100]


    М. В. Перрин [22] описывает более ранний этап экспериментальных исследований, приведших к открытию полиэтилена в лабораториях Империал Кемикел Индастриез. Это исследование вначале даже отдаленно не было связано с изучением полимеризации или свойств этилена, а было направлено на получение основных данных о влиянии высокого давления на физические свойства вещества и возможного химического эффекта от применения высокого давления. Специальный опыт, приведший к образованию полимера, предназначался для конденсации бензальдегида с этиленом. Однако при вскрытии автоклава было обнаружено, что бензальдегид остался в неизмененном состоянии, а внутренние стенки автоклава были покрыты белым твердым веществом в виде тонкой пленки. Ввиду того, что последующие опыты сопровождались взрывами, работа была прекращена. Спустя 2 года этот продукт был открыт вторично и снова случайно. Перрин подчеркивает, что факт признания открытия, может быть, является более выдающимся событием, чем само открытие. Фирма Империал Кемикел Индастриез построила небольшой завод и запатентовала полиэтилен в Англии, США и Франции как новое вещество. [c.166]

    Природные и синтетические высокомолекулярные соедине-1ИЯ (полимеры). Высокомолекулярными соедипения-л и, или полимерами, называют сложные вещества с большими лолекулярнымн массами (порядка сотен, тысяч и миллионов), ма-1екулы которых построены из множества повторяющихся элементарных звеньев, образующихся в результате взаимодействия и соединения друг с другом одинаковых или разных простых молекул — мономеров. [c.499]

    В протонной ЯМР-спектроскопии многоэкспоненциальность может быть также связана с кросс-релаксацией или спиновой диффузией между протонами воды и протонами поверхности. Теория кросс-релаксации в гетерогенных системах построена в работе [591]. Анализ экспериментальных данных показывает, что этот механизм чрезвычайно важен для водных растворов полимеров и биологических объектов [576, 591]. Наиболее отчетливо важность этого механизма продемонстрирована с помощью методики двойного разонанса [592], а также путем селективного возбуждения сигналов ЯМР в узком спектральном диапазоне [593]. [c.233]

    Молекула полимера может быть сформирована как из одинаковых по химическому составу и строению мономеров — гомополимеры, так и из мономеров разного строения — сополимеры, или смешанные полимеры. Линейные сополимеры, построенные из крупных химически однородных отрезков (блоков), называются блоксополимерами, а разветвленные сополимеры, главная цепь которых состоит из одних мономеров, а боковые ответвления — из других, называются привитыми сополимерами. Полимеры, главные цепи которых построены из одинаковых атомов, называются го-моцепными, если из различных атомов — гетероцепными. [c.104]

    Высокомолекулярными называют такие соединения, у которых молекулы (макромолекулы) состоят из огромного числа атомов — нескольких тысяч, десятков тысяч и более. Молекулы высокомолекулярных соединений чаще всего построены путем многократного повторения тех или иных определенных структурных единиц. Такие соединения и называют высокополиме рами или чаще просто полимерами. [c.559]

    Линейные полямеры построены из отдельных макромолекул, свяээн-нмх между собой межмолекулярными силами, величина которых в значительной степени определяет технические свойства вещества. Такие полимеры эластичны, плавятся или размягчаются при нагреве и при охлаждении снова переходят в твердое состояние. [c.18]

    Аыорфше полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачка состоит из многих рядов макромолекул, расположенных последовательно друг за другом. Часто амор ые полимеры состоят из свернутых в клубки цепей, так называемых глобул. [c.22]

    В ней учитываются спектры поглощения, отражательная способность, механические свойства, элементный состав, состав продуктов окисления и пр. По мнению Ван Кревелена, молекула угольного вещества не плоская и отдельные структурные единицы не являются точным подобием друг друга, как в обычных высокомолекулярных полимерах. Он утверждает, что макромолекула угольного вещества построена из различных элементарных структурных единиц, которые на схеме разделены пунктирными линиями. При дегидрировании разрыв молекулы происходит по пунктирным линиям. Ван Кревелен предполагает, что в начальной стадии углеобразования витреновые вещества- состоят из сравнительно малых по размерам конденсированных ароматических сеток, связанных между собой концевыми мостиковыми структурами, не имеющими ароматического характера. Подобная структура макромолекулы должна иметь три измерения. По мере углубления метаморфизма мостиковые структуры претерпевают глубокие превращения, которые приводят к увеличению степени конденсированности ароматических систем. [c.221]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    Лучше всего изучен лигнин хвойных пород (сосны). Его молекулярный вес составляет 10 ООО и выше. Он принадлежит к группе природных [СбСз]а .-соединений. В противоположность целлюлозе и другим полимерам, молекула лигнина построена из разнообразных Сд-элемен-тов. Различается также и способ взаимной связи этих структурных единиц большей частью они соединены с помощью связей С—С. [c.548]

    Полимерная макромолекула может быть построена из одинаковых по химическому строению полимеров. Нанрнмер, нолнэтн-лен состоит из повторяющихся звенр.ев газа этилена [СНг] . Такие полимеры называются гомополимерами. Если макромолекулы содерисат несколько типов мономерных звеньев, такие высокомолекулярные вещества называются сополимерами, нлп смешанными полимерами. [c.47]

    Сетчатые полимеры построены из длинных цепей, соединенных в трехмерную сетку иоиеречными химическими связями. Та- [c.47]

    Водные растворы мочевины и избытка формальдегида (на 1 моль мочевины 1,5—2 моля формальдегида) в слабокислсй среде (рН=4—6) при 75—80° постепенно становятся все более вязкими, не утрачивая при этом прозрачности и бесцветности. Повышение вязкости раствора объясняется протеканием реакции поликонденсации первоначально образующихся метилолмочевины и диметилолмочевины. Процесс поликонденсации может протекать в различных направлениях. При взаимодействии иминогрупп и метилольных групп молекул моно- или диметнлолмочевин образуется полимер, основная цепь которого построена из метиленовых групп и атомов азота  [c.432]

    Наша цель состоит в исчерпываюш,ем и всестороннем аналитическом описании процессов переработки полимеров, которое будет полезно инженерам-переработчикам. Традиционные методы описания переработки полимеров построены на анализе специфических технологических процессов, таких, как экструзия, литье под давлением, каландрование и т. д. Наш подход основан на убеждении, что воздействия, которым полимер подвергается в том или ином виде оборудования, не имеют принципиального различия. Полимер, попадающий в любой вид перерабатывающего оборудования, подвергается примерно аналогичным воздействиям. Поэтому каждый технологический процесс можно разложить на ряд последовательных элементарных технологических воздействий (стадий), которые служат для подготовки полимера к формованию любым известным технологическим методом. С другой стороны, мы обращаем внимание и на специфические особенности каждого из распространенных методов переработки полимеров или видов оборудования, которые заключаются в использовании какого-либо специального элементарного воздействия или необычного механизма формования или, наконец, особого конструктивного решения. [c.10]

    Полимерные порошки проводят тепло гораздо хуже, чем гомогенные системы, поскольку коэффициент теплопроводности большинства газов значительно ниже, чем у полимеров [/гвозд = = 0,026 Дж/(м-с-К) йпэнп = 0,182 Дж/(м-с-К)]. Площадь контакта между твердыми частицами мала. Тепло передается несколькими способами через твердые частицы, через контактные поверхности между твердыми частицами, через газовые прослойки в местах контакта, через газовую фазу, радиацией между твердыми поверхностями и радиацией между соседними порами. Ясно, что уплотнение будет влиять на большинство этих способов теплопередачи, поэтому не удивительно, что эффективный коэффициент теплопередачи чувствителен к уплотнению. Яги и Кунии [21] по экспериментальным данным построили математическую модель теплопроводности слоя частиц, которая в случае неспекшихся частиц и низких температур упрощается до следующего уравнения  [c.123]

    Замечание. В Задачах 5.12 — 5.14 расснатривается установившаяся теплопередача в. твердых полимерах при постоянных плотности и коэффициенте теплопередачи. Они построены так, чтобы читатель, не знакомый е задачами теплопередачи, смог получить представление о решеини проблем, характерных для процессов переработки полимеров. Можно предложить следующую методику решения 1) после выбора подходящей системы координат изобразите схему теплопередачи и сделайте соответствующие допущения 2) запишите уравнения энергии в форме, соответствующей задаче 3) сформулируйте граничные условия 4) вычислите профиль температур и теплонотерь на поверхности 5) изобразите профиль температур. [c.131]


Смотреть страницы где упоминается термин Как построены полимеры: [c.48]    [c.14]    [c.159]    [c.16]    [c.371]    [c.376]    [c.11]    [c.61]    [c.27]    [c.59]    [c.168]    [c.189]    [c.298]    [c.13]   
Смотреть главы в:

Полимеры -> Как построены полимеры




ПОИСК







© 2025 chem21.info Реклама на сайте