Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель в силикатах

    Использование в качестве носителя кизельгура нельзя считать удачным, так как в условиях конверсии при высоких температурах он образует с окисной формой никеля силикаты, снижающие активность и стабильность катализатора. [c.41]

    Никель силикат алюминия [c.70]

    Определение никеля силикатов [c.137]

    При такой обработке в раствор переходит также никель силикатов, содержание которого определяют в другой навеске, как описано выше. Затем вносят соответствующую поправку при вычислении результатов определения никеля пирротина. [c.138]


    Возможные формы никеля в шлаках — никель металлический., сульфид, изоморфно связанный с сульфидом железа—пирротином, ферроникель и никель силикатов [Ю]. Для избирательного растворения сульфида никеля, а иногда и суммы никеля металлического и сульфида никеля использовали уксуснокислый раствор перекиси водорода, раствор сульфата меди или сулемы. Действие этих реагентов на ферроникель было неизвестно. [c.140]

    Определение никеля силиката [c.143]

    В качестве промоторов при использовании трифторида бора как катализатора иногда добавляют никель, силикаты алюминия, а также окислы циркония, ванадия, хрома, марганца, кобальта, никеля, ртути, алюминия, кремния и титана. [c.188]

    В качестве активаторов полимеризации с ВРд изучались металлический никель, силикаты алюминия и др. [c.7]

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]


    Катализатор содержит 40% никеля на силикате магния [c.129]

    Аморфные на основе силиката никеля 0,228 0,011 [c.181]

    Гидрирование ЦДТ в циклододекан с практически количественным выходом получается на нанесенных на окись алюминия, силикат н уголь металлах VHI группы — никеле, кобальте, меди, палладии и др. Область температур превращения ЦДТ в -циклододекан — 20—250 С, давлений—от атмосферного да 30 МПа. Один из наиболее активных катализаторов — палладиевый. [c.18]

    Взвешенные частицы анализируют на содержание ионов фтора, нитратов, сульфатов и аммиака, а также мышьяка, бериллия, висмута, кадмия, хрома, кобальта, меди, железа, свинца, марганца, молибдена, никеля, селена, олова, ванадия и цинка. Улавливаются и анализируются также асбест, бор, силикаты. [c.100]

    Непосредственно из кротонового альдегида н-масляный альдегид можно получать следующими методами жидкофазным гидрированием при 20—30° с никелем на пемзе в качестве катализатора [22] жидкофазным гидрированием при 75° и 10—12 ата в присутствии никеля, суспендированного в масле [23] парофазным гидрированием при 80—100° над хромитом никеля на носителе [24] или при 230—250° в присутствии смеси карбоната меди и силиката натрия как катализатора. Нормальный масляный альдегид производят также каталитическим дегидрированием н-бутилового спирта при 300—350° и атмосферном давлении с медно-цинковым катализатором на пемзе. Процесс проводят так, чтобы степень превращения за один проход равнялась 50% выход при этом составляет 90—95% [16]. [c.306]

    Изложенное правило имеет ориентировочный характер, и, учитывая некоторые особенности осадков или исследуемых материалов, величину навески иногда изменяют. В тех случаях, когда получают очень объемистые осадки, например при осаждении никеля диметилглиоксимом, удобнее брать меньшие навески. При анализе материалов, содержащих ряд компонентов в различных отношениях (например, сплавы, горные породы и т. д.), берут в обычных случаях навески от 0,2 (для легких сплавов и др.) до 1 г (для силикатов, руд и т. п.). Если необходимо определить какие-либо микрокомпоненты, то применяют навески, доходящие иногда до 10 и даже 100 г. [c.77]

    Применяют такие замедлители коррозии, добавка которых к раствору электролита вызывает изменение потенциала металла, приближая его к потенциалу малоактивных металлов. Анодные замедлители коррозии, к которым относятся фосфаты, силикаты, нитраты, хроматы и др., способствуют уменьшению площади анодных участков на поверхности металла, а следовательно, и уменьшению количества растворяющегося металла. Катодные замедлители коррозии — соли магния, цинка, никеля и др.,— способствуют уменьшению эффективной площади катодных участков на поверхности металла, что ведет к уменьшению общей скорости коррозии. [c.196]

    Растворы уксусной кислоты - 2 моль/л соляной кислоты -0,5 моль/л, 2 моль/л серной кислоты ( >=1,84 г/см ) хлоридов магния и алюминия силиката натрия сульфатов никеля (И) и цинка эквивалентной концентрации - 0,5 моль/л едкого натра - 0,5 моль/л. [c.51]

    Нумеруют пять пробирок. В каждую пробирку вносят по 1-2 мл растворов в 1-ю - хлорида магния, во 2-ю, в 3-ю, 4-ю и 5-ю -соответственно хлорида алюминия, силиката натрия, сульфатов никеля и цинка. В пробирки 1,2,4,5 прибавляют по каплям раствор щелочи до начала выпадения осадков гидроксидов, а в пробирку 3 добавляют 1-2 мл раствора соляной кислоты концентрации 2 моль/л. Содержимое пробирок делят на две части. К одной части добавляют 1-2 мл раствора соляной кислоты концентрации 0,5 моль/л, к другой - столько же раствора щелочи. В чем растворяется каждый гидроксид  [c.51]

    В стакан наливают 300-400 мл 10 %-ного раствора силиката натрия и 50-60 мл раствора соляной кислоты (1 3). Бросают в раствор крупные кристаллы хлоридов кобальта, железа, меди и никеля. Через некоторое время наблюдается образование различных по форме и окраске причудливых "растений". Объяснить это явление, принимая во внимание, что на поверхности кристаллов солей кобальта, железа, меди и никеля образуется тонкая пленка соответствующих нерастворимых силикатов, проницаемая для молекул воды, но не проницаемая для гидратированных ионов. [c.130]

    Была изучена возможность применения рекомендованных в литературе растворителей для раздельного определения никеля силикатов, сульфидов и никеля, входящего изоморфно в решетку сульфидов железа (пирротина, пирита) и решетку силикатов (оливина, серпентина, перовскита) [8]. Оказалось, что 30%-ная перекись водорода переводит в раствор никель оливина на 167о. а смесь уксусной кислоты и перекиси водорода — на 87% смесь разбавленной (1 2 или 1 3) серной кислоты с сульфатом меди и фтористоводородной кислотой растворяет никель сульфида в среднем на 4—9%. Возможен перевод в раствор никеля сульфида хлорированием — путем спекания с хлоридом аммония при 300— 350 °С. При этом сульфид никеля превращается в хлорид и затем переходит в раствор при обработке спека водой. Никель силикатов при этом не затрагивается. [c.134]


    Катализатор, для которого не характерно коксообразо-вание, состоит из 35—40% окислов никеля или кобальта, металлов группы платины (0,01—0,1%) и тугоплавкого носителя. В состав носителя входят тугоплавкие окислы щелочноземельного металла, силикаты или алюмикаты (А1, 51, Т1, 2г, Сг, Мо и др.) и гидравлическое связующее. В носитель введены не связанные с ним окислы щелочного металла и меди (0,1— 10 мас.% в расчете на СиО). Медь вводят в катализатор в качестве промотора. Катализатор получает смешением указанных компонентов в водной среде для образования вязкой пасты с последующим добавлением связующего, формовкой, сушкой и прокаливанием. Щелочные металлы вводят в готовый катализатор погружением его в водный раствор соединений щелочного металла. Таким же образом в катализатор [c.166]

    Никелевый катализатор является лучшим катализатором для конверсии метана [132]. Важным фактором, влияющим на активность никелевого катализатора, является подбор носителя, обеспечивающего большую механическую прочность и высокоразвитую каталитическую поверхность. Наибольшее применение в качестве носителя нашли окислы алюминия и магния, портландцемент, шамот, природные глины. Лучшими промоторами никелевого катализатора, нанесенного па окись алюминия, оказались MgO, rjO , ThO. Содержание никеля в различных катализаторах колеблется от 4 до 20%. Содержание окиси кремния в катализаторе не должно превышать 0,5%, так как при температуре выше 800° С никель взаимодействует с окисью кремния, образуя неактивный силикат никеля [133]. [c.185]

    Пустая порода руды состоит из оксидов кремния, алюминия, кальция и магния, образующих разнообразные силикаты и алюмосиликаты. Кроме пустой породы в железных рудах содержатся в виде оксидоб такие металлы как марганец, хром, никель, молибден, вольфрам, ванадий. [c.50]

    Материал Обожженный силикат кальция Флюс Обожженный диатомит Товарный цемент Комовая глина Обработанный диатомит Пшеничный крахмал Таконит Пары 2пО Пары печи выплавки никеля Магнезит Ацетат целлюлозы Оксид молибдена Сахар Уголь SRF Коалин [c.369]

    Никель исключительно устойчив в горячих и холодных щелочах. Более стойки, возможно, только серебро и цирконий. В кипящем 50 % растворе NaOH никель корродирует со скоростью 0,06 г/(м -сут). Он стоек также в расплавленном NaOH, причем в этом случае предпочтителен никель с низким содержанием углерода, который не склонен к межкристаллитному разрушению в напряженном состоянии. Для снятия внутренних напряжений рекомендуют отжиг в течение 5 мин при 875 С. Никель разрушается в аэрированных водных растворах аммиака, образуя в качестве продукта коррозии комплекс Ni (NHa) " . Он не стоек также в концентрированных гипохлоритных растворах, которые, вызывают появление питтинга. Небольшие количества силиката натрия действуют как ингибитор коррозии [2]. [c.360]

    Предложено много катализаторов гидрокрекинга. Активными компонентами их являются некоторые соединения металлов VI и УП1 групп периодической системы элементов Д. И. Менделеева. Довольно часто выбор останавливают на катализаторах, содержащих сульфиды никеля и вольфрама или иикеля и молибдена, нанесенных на крекирующие пористые носители (окись алюминия, алюмо силикаты) и активированных галогеном (фтором, хлором). Соотношение компонентов — гидрирующего, расщепляющего кольца и гидроизомеризующего — в катализаторе должно быть таким, чтобы достигался, требуемый результат. Нежелательна избыточная крекирующая активность катализатора во избежание усиленного образования газов и легких жидких продуктов. Подбору катализаторов, пригодных для изменения структуры углеводородов в нужном направлении, уделяется большое внимание. Активность и селективность (по приросту индекса вязкости) зависят не только от состава катализатора, но и от способа его приготовления. Ниже указаны выход и свойства масел, полученных глубокой гидроочисткой (гидрокрекингом) деасфальтизата (плот- [c.280]

    Давно известно, что настойчивое выщелачивание кислотой некоторых силикатов, алюмосиликатов и боросиликатов приводит к почти полному удалению из их состава щелочных и щелочноземельных оксидов и выделению твердого кремнеземного или алюмокремнеземного остатка обработка алюминиево-никелевого сплава щелочью позволяет получать пористый никель Ренея. Обугливание различных углеродистых веществ, активирование угля водяным паром позволяет другим путем достигать аналогичного результата — выделения из состава сложного твердого вещества более простого твердого вещества, состоящего из атомов элементов, связанных особо прочными ковалентными связями. [c.61]

    Проведение опыта Б. Разбавляют в пять раз ко тор-СК1ИЙ силикатный клей ли приготовляют 50%-ный раствор силиката натрия. Приготовленный раствор наливают в сосуд с плоскопараллельными стенками емкостью 2 л и бросают в него крупные кристаллы следующих солей хлорида железа, хлорида марганца, хлорида магния, сульфата меди, а также сульфата никеля. [c.54]

    Наиболее распространенную группу минералов образуют силикаты. Согласно имеющимся оценкам, более 90% земной коры состоит из силикатов, если в их число включать кварц 8)02. Допустим, что вы подобрали кусок самого обьиного [ранита, подобного показанному на рис. 22.4, и определили его элементный состав. Вы обнаружите, что гранит содержит приблизительно 50 вес.% кислорода и 25 вес.% кремния. Кроме того, ои содержит поразительно много разных важных металлов. В 100 кг гранита содержится приблизительно 8 кг алюминия, 5 кг железа, 90 г марганца, 20 г никеля и 10 г меди. Однако несмотря на эти цифры, силикаты в настоящее время не могут рассматриваться как экономически выгодные сырьевые источники указанных выше и других металлов. Дело в том, что силикаты являются чрезвычайно устойчивыми химическими соединениями для извлечения из них металлов необходимы слишком большие затраты энергии. Тем не менее они представляют немалый интерес для эко-нокшки и используются, например, для получения цемента и стекла. [c.341]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Какие соединения нужно взять для получения силиката железа FeSiOa и силиката никеля NiSiOa Составить уравнения реакций. [c.268]

    Общая характеристика. В отличие от четного элемента железа нечетный кобальт мало распространен (с. 114). Кобальт является элементом-одиночкой (природный стабильный изотоп 27 o), из радиоизотопов наиболее важен 27 Со (Г /2 = 5,,24 года, жесткий 7-излучатель). Уже упоминалось (с. 239), что кобальт присутствует обычно в минералах никеля, причем соблюдается соотношение [Со] [Ni] == = 1 10, как правило, это серо- и мыщьяксодержащие минералы. Наиболее известные собственно кобальтовые минералы — смальтит ( oAs) и кобальтит, или кобальтовый блеск ( oAs). Название смальтит происходит от смальта — синяя краска на основе силиката кобальта. [c.136]

    Первой стадией переработки рассматриваемой руды является ее обогащение. Для отделения u-Ni-минepaлoв от пустой породы руду измельчают и обогащают флотацией. Руда увлекается пеной, перетекающей через борта барботера и затем поступает на фильтр. Полученный таким образом концентрат подвергается обжигу на многоподовой печи, снабженной гребками (аналогично обжигу пирита при сернокислотном производстве). Обжиг позволяет понизить содержание серы. Следующая стадия технологической схемы — плавка в отражательной печи (так называемая плавка на роштейн — сырой (грубый) камень ). В отражательной печи факел пламени горящей нефти или газа отражается от верхнего свода печи и падает на раскаленную руду. Содержание серы еще более понижается, количество меди и никеля в роштейне составляет —16% химический состав роштейна Си25 + + N 382. Содержание сульфидов меди и никеля на стадии обработки в отражательной печи благодаря выгоранию серы и отделению расплава силикатов повышается от —0,5 до —50%. [c.145]

    Способы получения. Важнейшим исходным материалом для добычи никеля является гарниерит (N1, Mg) 510з пН О Получение из него никеля основано на сильном сродстве последнего к сере. Гарниерит сплавляют с веществами, легко отдающими серу. Никель образует N1382, в. то время как магний и другие примеси в виде силикатов переходят в шлак. Путем обжига N 382 переводят в оксид никеля последний восстанавливают углеродом до чистого металла. [c.386]


Смотреть страницы где упоминается термин Никель в силикатах: [c.183]    [c.79]    [c.181]    [c.181]    [c.235]    [c.276]    [c.140]    [c.65]    [c.178]    [c.236]    [c.397]    [c.90]    [c.384]   
Количественный микрохимический анализ минералов и руд (1961) -- [ c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Силикаты



© 2025 chem21.info Реклама на сайте