Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение никеля силикатов

    Определение никеля силикатов [c.137]

    Определение никеля силиката [c.143]

    Особенно выгодно маскирование при помощи триэтаноламина при проведении титрований в присутствии мурексида в качестве металлиндикатора [12]. Триэтаноламиновый комплекс с трехвалентным железом в растворе аммиака окрашен в слабо-желтый цвет, в растворе едкого натра комплексон бесцветен. В таком растворе можно очень точно определить содержание кальция по мурексиду в присутствии большого количества железа, что имеет большое значение при анализах цемента, силикатов и т. п. Можно проводить титрование в присутствии мурексида и в аммиачном растворе, одновременно маскируя железо и алюминий триэтаноламином. Это главным образом относится к определению никеля. Медь таким путем определить нельзя, поскольку она образует с триэтаноламином довольно прочный комплекс. В растворе ед- [c.420]


    Установлено, что измерение одной спектрограммы дает возможную ошибку в 25%, а среднее при измерении четырех спектрограмм понижает ошибку примерно до 5%. Для сравнения заметим, что в 0,5 г силиката можно определить никель и кобальт колориметрически с чувствительностью в 1 г/г и с ошибкой около 10%, если содержание этих металлов в силикате равно 10 г/г. Флуоресцентным методом можно обнаружить в силикатах даже 2 г/г бериллия. Для определения в силикатах лития и лантана нет чувствительных колориметрических методов. [c.23]

    При такой обработке в раствор переходит также никель силикатов, содержание которого определяют в другой навеске, как описано выше. Затем вносят соответствующую поправку при вычислении результатов определения никеля пирротина. [c.138]

    При выделении оловянной кислоты из сплавов осадок захватывает заметные количества ионов других металлов, находившихся в сплаве (медь, железо и др.) захватывается также фосфорная кислота. При выделении нерастворимой кремневой кислоты из раствора силикатов захватываются и не удаляются при последующем промывании примеси многих металлов,, дающих в этих условиях растворимые соли. При осаждении щавелевокислого кальция захватывается заметное, а иногда и большое количество магния. При осаждении никеля большим избытком диметилглиоксима последний частично захватывается осадком и не отмывается водой, что обусловливает получение повышенных результатов при определении никеля (после высушивания и взвешивания осадка) . Чтобы получить точные результаты,. [c.66]

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]


    По данным работ [63, 641, катализатор, дезактивированный окисью кремния, вследствие образования неактивного силиката никеля снова приобретает начальную активность при добавке к конвертируемому газу определенных количеств серы. Авторы установили, что стабилизирующее действие сернистых соединений заключается во взаимодействии их с силикатами никеля с образованием нестойких сульфидов никеля, разлагающихся в процессе конверсии [c.136]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Определению мешают многие катионы (алюминия, хрома, урана, меди, цинка, кобальта, никеля и др.), анионы (силикаты, фосфаты) и комплексообразующие вещества (фториды, оксисоединения). [c.243]

    Определению не мешают ионы ацетата, алюминия, аммония, бромида, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, бихромата, фторида, трехвалентного железа, двухвалентного свинца, двухвалентного марганца, молибдата, никеля, оксалата, перхлората, перманганата, калия, серебра, натрия, сульфата, ванадата и цинка. Мешают ионы силиката, арсената, арсенита, германата и нитрита их следует удалять перед первой экстракцией. Допустимо присутствие не более 200 мкг мл нитрата и 20 мкг мл вольфрамата. [c.22]

    Определению не мешают следующие ионы ацетат, арсенит, борат, бромид, хлорид, цитрат, формиат, фосфат, силикат, сульфат, тартрат, тетраборат, роданид, алюминий, аммоний, барий, кадмий, кальций, двухвалентный кобальт, литий, магний, двухвалентные марганец и никель, калий, натрий, стронций, торий и цинк. [c.134]

    Простые условия определения цинка, меди, никеля, железа и алюминия разработал также Рингбом [32], предложивший простой метод определения некоторых этих элементов в силикатах. [c.401]

    В своих исследованиях мы наблюдали, что в хорошо раскисленных сталях метод вакуум-плавления обычно дает по кислороду результаты, близкие к полученным при анализе шлаковых включений. Однако в ряде случаев, по-видимому, когда кислород находится в стали в форме твердого раствора или в виде свободных окислов железа и марганца, не связанных, например, в силикаты, содержание кислорода, определенное анализом шлаковых включений, оказывается меньше, чем найденное по методу вакуум-плавления. Это может быть объяснено растворением закиси железа и закиси марганца реактивом при электрохимической обработке образца. В нашей практике был, например, такой случай. В сварном шве, содержащем 16% хрома, 13% никеля, 2% молибдена, 0,1% углерода и 1,5% марганца но подсчету количества шлаковых включений оказалось всего 0,0045% кислорода, из которого 0,0013% было связано с кремнием, 0,0001% с железом и 0,0031 % с алюминием. Однако механические свойства шва оказались очень невысокими, и было решено определить в нем содержание газов методом вакуум-плавления. Определение кислорода этим путем показало, что его содержится в металле шва 0,0510%, т. е. в 10 раз- [c.170]


    Определению не мешают 100 мг/л ионов железа, меди, никеля, кобальта, кадмия, свинца, тетрафторбората и силиката 1000 мг/л-на-трия, калия, кальция, хлорида, сульфата, фосфата и ацетата. [c.187]

    Для определения серы в органических соединениях в субмикроколичествах предложено несколько методов разложения вещества. В первых работах применяли сплавление с натрием как в стеклянных запаянных трубках, так и в никелевых бомбах, но эта методика оказалась непригодной вследствие помех, возникающих при конечном титровании от силикатов или никеля, выщелачивающихся из реакционных сосудов. Изучали также различные методики титрования подробное описание приводится в работе [1]. [c.89]

    Была изучена возможность применения рекомендованных в литературе растворителей для раздельного определения никеля силикатов, сульфидов и никеля, входящего изоморфно в решетку сульфидов железа (пирротина, пирита) и решетку силикатов (оливина, серпентина, перовскита) [8]. Оказалось, что 30%-ная перекись водорода переводит в раствор никель оливина на 167о. а смесь уксусной кислоты и перекиси водорода — на 87% смесь разбавленной (1 2 или 1 3) серной кислоты с сульфатом меди и фтористоводородной кислотой растворяет никель сульфида в среднем на 4—9%. Возможен перевод в раствор никеля сульфида хлорированием — путем спекания с хлоридом аммония при 300— 350 °С. При этом сульфид никеля превращается в хлорид и затем переходит в раствор при обработке спека водой. Никель силикатов при этом не затрагивается. [c.134]

    Обзор количественных методов определения никеля до 1956 г. в геологических объектах приведен в монографии Катченкова [138] и работе Ициксона [127]. Позже было опубликовано также большое число работ по определению никеля в рудах [116, 117, 1164], минералах и силикатах [228, 941, 1244]. [c.137]

    Никель (обычно вместе с кобальтом) встречается в самородном виде и в сплавах с железом—в метеоритах и в минералах аваруите и джозефините. Никель часто обнаруживают и в изверженных породах, где он присутствует, вероятно, в качестве составной части оливина его находят преимущественно в силикатах, сульфидах, арсенидах, аити-монидах и в виде теллурида никеля, реже—в некоторых других минералах, например в фосфатах, где он часто сопровождается цинком, медью и хромом . Присутствие никеля особенно характерно для магнезиальных изверженных пород, в которых он обычно связан с хромом. Очевидно, что тщательное испытание на никель желательно при анализе всех пород и минералов. Постоянная необходимость определения никеля в различных металлургических материалах хорошо известна и не нуждается в комментариях. [c.417]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Ионы алюминия, аммония, кадмия, трехвалентного хрома, двухвалентной меди, кальция, двухвалентного железа, магния, двухвалентного марганца, никеля, цинка, хлорида, бромида, ацетата, цитрата, силиката, фторида, ванадата и бората не мешают. Должны отсутствовать ионы двухвалентного олова, нитрата и арсената. Концентрация трехвалентного железа не должна превышать 200 мкг/мл. Допустимо присутствие не более 10 мкг1мл вольфрамита. Определению мешают двухвалентный свинец, трехвалентный висмут, барий и трехвалентиая сурьма вследствие образования осадка или мути в сернокислых растворах. [c.13]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    При добавлении избытка раствора молибдата к кислому раствору, содержащему ионы ортофосфата, возникает желтая окраска [6] вследствие образования фосфорномолибденовой кислоты Нз[Р(МозОл,)4 (х + 2)Н20. Оптимальными условиями ее образования является конечная концентрация молибдата около 0,04 М и конечная концентрация НС1О4 или НМОз около 0,25 М. Оптимальный интервал концентраций фосфора 1—15 мкг1мл, если оптическую плотность измерять при 389 ммк. Растворы подчиняются закону Бера. Определению мешают главным образом ионы силиката, арсената, вольфрамата, ванадата и висмута. Также мешают двухвалентные никель и медь и фторид при концентрации соответственно выше 40, 100 и 25 мкг1мл. [c.19]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Мешающее влияние различных ионов изучали, вводя их в анализируемый раствор. При определении 2—40 мкг F- в растворе могут присутствовать следующие соли и ионы в количествах, не превышающих указанные ниже 1,0 г КС1, 5,0 г Na 104-H20 100 мг бромата, бромида, иодида, нитрата, нитрита, селената и тетрабората, 10 мг сульфата, 1 мг ацетата, цитрата, силиката и тартрата, 100 мкг оксалата и фосфата, 10 мкг карбоната и сульфида 1 мг аммония, бария, кальция, лития и магния, 200 мкг хромата, 100 мкг меди(П), марганца(П) и молибдена(VI), 50 мкг хро-ма(1П), 20 мкг бериллия, 10 мкг.церия( ), серебра, титана(1У) и цинка, 5 мкг алюминия, кобальта(II), ртути(II) и никеля, 3 мкг железа(П, III), 2 мкг ванадия(V). [c.348]

    Г. Костер и др. (Koster, Eisner, Ariel, 1967), определяя Zn в силикатах, обнаружили, что полярографированию цинка мешают небольшие количества платины, переходящие в раствор при разложении образца сплавлением с НзВОз+LiF в платиновых тиглях. Платину и другие мешающие определению цинка элементы (железо, марганец, ванадий и никель) отделяли с помощью ионообменных смол. Цинк определяли в злюате, проводя полярографирование на фоне ацетатно-аммонийного буферного раствора с pH 4,5. Метод проверен на стандартных образцах с известным содержанием цинка. [c.213]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    Более подробные сведения об образовании в определенных условиях гидросиликатов никеля дала работа ван Эйка ван Воортхейзена и Фрапцена [2]. Эти авторы приготовили несколько препаратов из кипящих разбавленных растворов нитрата никеля и щелочного силиката, взятых в различных пропорциях. Для выяснения вопроса, в какой степени требуется для образования гидросиликатных структур совместное осаждение, к суспензии гидроокиси никеля в растворе силиката добавляли кислоту (благодаря чему осаждался кремнезем) или, наоборот, к суспензии силикагеля в растворе азотнокислого никеля добавляли щелочь. Некоторые из препаратов были подвергнуты гидротермической обработке при 250° С в течение 50 час. с добавлением воды в количестве, достаточном для образования наилучшей возможной структуры. [c.156]

    Определение железа производят колориметрически по окраске его комплексного соединения с сульфосалициловой кислотой в аммиачной среде (И. М. Коренман, 1934 В. М. Пешкова и А. Д. Егоров, 1935 В. И. Кузнецов, 1946). Окраска устойчива во времени и при достаточном избытке реагента почти не зависит от наличия в растворе других солей. Из обычных составных частей силикатов только марганец, при его высоком содержании в исследуемом материале (что случается редко), мешает определению железа, сообщая раствору бурую окраску Определению железа мешают также окрашенные ионы меди, никеля, кобальта, хрома, если они присутствуют в растворе в значительных количествах. Перекись водорода сообщает раствору коричневый оттенок. [c.13]


Смотреть страницы где упоминается термин Определение никеля силикатов: [c.456]    [c.126]    [c.149]    [c.216]    [c.273]    [c.478]    [c.17]    [c.250]    [c.59]    [c.939]    [c.165]    [c.374]    [c.35]   
Смотреть главы в:

Фазовый анализ руд и продуктов их переработки -> Определение никеля силикатов




ПОИСК





Смотрите так же термины и статьи:

Никель определение

Определение кал ция силикатах

Силикаты



© 2025 chem21.info Реклама на сайте