Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий координационное число

    Комплексные соединения. Многие типы комплексных соединений германия, в частности галогенидные, были описаны ранее. В комплексах германия (IV) его координационное число 6, в комплексах германия (И) — 4. Комплексы германия (II) исследованы еще очень мало. [c.170]

    Соединения германия (П), олова (П) и свинца (II). Координационные числа элементов подгруппы германия в степени окисления +2 более разнообразны, чем в степени окисления +4, и равны 3, 4, 5 и 6. [c.429]


    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]

    Из экспериментальных значений атомных функций распределения для многих моноатомных жидкостей вычислены координационные числа, которые несколько отличаются от аналогичных величин для твердой фазы. Для большинства простых веществ плавление сопровождается увеличением объема и координационные числа в жидкой фазе меньше, чем в кристаллической, У некоторых элементарных веществ (висмут, германий) плавление сопровождается уменьшением объема, В этом случае координационное число в жидкой фазе больше, чем Б кристалле. Сказанное подтверждается следующими данными, где сопоставлены (п ж) координационные числа в кристалле и в жидкой фазе для области температур, близкой к температуре плавления гелий (12 8,4), неон (12 8,6), аргон (12 10,5), ксенон (12 8,5), литий (14  [c.229]

    В кристаллическом же состоянии электрические моменты диполей отдельных связей (даже если они и существуют) взаимно скомпенсированы и суммарный собственный электрический момент диполя в кристалле равен нулю. Поэтому исследования поляризационных явлений в кристаллах дают мало информации о направленности связей и структуре. Однако и в кристаллическом состоянии эта направленность существует, что особенно ярко проявляется в кристаллах с преимущественно ковалентной связью (кремний, германий, 1пР, 2п5 и т. п.). Связи в таких кристаллах направлены к вершинам тетраэдра (см. рис. 3 и 4), поэтому подобные вещества часто называют тетраэдрическими фазами. Жесткая пространственная направленность ковалентных связей предопределяет образование рыхлых кристаллических структур с низкими координационными числами (как правило, не выше четырех). Для солеобразных и металлических кристаллов, в которых доминирует, соответственно, ионная и металлическая составляющая связи, характерны плотные и плотнейшие упаковки с координационными числами 6—8 для ионных и 8—12 для металлических решеток. Здесь значительную роль играют размеры взаимодействующих атомов, которые и определяют координационное число в кристаллических решетках. Однако при этом сохраняется определенная направленность химической связи, что проявляется в пространственной периодичности строения кристаллов. На существование электронных мостиков между взаимодействующими атомами указывают [c.82]


    Как и в других подгруппах р-элементов, в подгруппе германия с ростом порядкового номера элемента в образовании химических связей все большую роль начинают играть и /-орбитали. Поэтому в ряду С—51—Ое—5п—РЬ устойчивое координационное число повышается. [c.482]

    Физические и химические свойства. В компактном состоянии германий представляет собой хрупкое вещество серебристо-серого цвета с желтоватым отливом и металлическим блеском. При обычных условиях германий кристаллизуется в структуре типа алмаза и обладает ярко выраженными полупроводниковыми свойствами. Однако при высоких давлениях германий претерпевает полиморфные превращения, образуя сначала тетрагональную структуру -олова, а затем и более плотно упакованную ОЦК-структуру. Это сопровождается увеличением координационного числа и появлением металлических свойств. [c.217]

    Некоторые простые вещества (кремний, германий, серое олово) имеют кристаллические решетки, принадлежащие к структурному типу алмаза, ячейка такой решетки изображена на рис. 1.78. В решетке алмаза каждый атой углерода связан четырьмя ковалентными связями с четырьмя другими атомами углерода. Ячейка этой решетки построена следующим образом. К 14 атомам, составляющим гранецентрированное кубическое расположение, добавляется еще 4 атома. Последние располагаются внутри куба в центре тетраэдров, образованных атомом, находящимся в вершине куба, и его тремя ближайшими соседями, расположенными в центрах граней. Координационное число атомов в решетке алмаза равно 4. [c.159]

    Структура элементных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближайших соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8—IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8—VI). [c.341]

    Структуры простых веществ элементов IV группы (углерод, кремний, германий, серое слово, но не свинец) соответствуют правилу Юм-Розери и имеют координационное число четыре. [c.276]

    Олово существует в двух полиморфных модификациях, причем низкотемпературная (a-Sn — серое олово) обладает кристаллической решеткой типа алмаза и полупроводниковыми свойствами, а высокотемпературная ( -Sn — белое олово), хотя и представляет собой металл по физическим свойствам, тем не менее кристаллизуется в малохарактерной для металлов тетрагональной структуре. С химической точки зрения олово ближе примыкает к германию, чем к свинцу, но металлический характер этого элемента выражен более ярко, чем у германия. Единственным типичным металлом в этой подгруппе является свинец. В виде простого вещества он кристаллизуется в плотноупакованной ГЦК структуре с координационным числом 12. В своих соединениях он выступает в основном в качестве катионообразователя. [c.215]

    Одно и то же вещество в твердом и жидком состояниях имеет различную плотность. Обычно плавление сопровождается некото рым увеличением межатомных расстояний, понижением координа ционного числа, т. е. образованием более рыхлой структуры. Вследствие этого плотность жидкости, как правило, меньше, чем плотность соответствующего кристалла. Однако если кристаллы имеют недостаточно плотную упаковку (например, многие ковалентны кристаллы с тетраэдрическими связями), то при плавлении возможно увеличение координационного числа. Тогда плотность жидкого вещества больше плотности его кристаллов. Подобного рода аномалии обнаруживают, например, германий, кремний, галлий, висмут, вода и многие сложные полупроводниковые фазы. [c.240]

    Атомные (неметаллические) кристаллы с ковалентной связью между атомами. Их особенности. Координационные числа. Нарушение принципа плотной упаковки из-за направленности ковалентных связей. Некоторые особенности соединений с решетками типа сфалерита. Частицами, строящими такие кристаллы, являются атомы. Весь кристалл вещества представляет собой как бы гигантскую молекулу. Типичные представители кристаллических веществ с неполярной ковалентной связью между атомами — алмаз, кристаллические кремний и германий, а-олово, решетки которых рассмотрены выше. Кристаллический бор тоже имеет атомную неметаллическую решетку. [c.131]

    Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4. Структура алмаза показана на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известно большое число веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (у алмаза свыше 3500°С), прочны и тверды, практически нерастворимы в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием. [c.79]


    Отметим, что энтропия плавления кремния примерно такая же, как германия. Это дает основание предполагать, что при плавлении среднее координационное число атомов кремния тоже возрастает от [c.202]

    Энтропия плавления олова в два раза меньше, чем германия, но все-таки довольно велика. Можно предполагать, что плавление сопровождается переходом ближнего порядка к ОЦК структуре. По рентгенографическим данным (см. [21]) среднее координационное число атомов олова в жидкой фазе в пределах ошибок опыта равно 8 и остается таким при нагревании жидкости даже на 900 К выше точки плавления. [c.203]

    Уменьшение объема прн плавлении галлия, германия, сурьмы и висмута можно объяснить перераспределением электронной плотности, сопровождающимся ростом концентрации электронов проводимости и увеличением координационного числа. Во всех этих случаях электропроводность расплава выше электропроводности твердой фазы. [c.278]

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]

    Металлическая связь. Металлы отличаются от других веществ высокими значениями электро- и теплопроводности, а их структуры характеризуются высокими координационными числами. О существовании межатомной связи в металлах свидетельствуют энергии атомизации металлов, которые меняются в широких пределах (табл. 12). Для сравнения здесь помещены данные по энергии атомизации таких типичных ковалентных кристаллов, как кремний и германий. [c.94]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    Особенно интересным представляется строение соединений германия с оксикислотами. Как уже отмечалось, винная кислота является не бидеитантным (в кислой среде), а тетрадентантным лигандом и поэтому, вероятно, молекула ее закручена вокруг атома германия. Координационное число германия равно 6, поскольку это соединение является одноосновной кислотой. С другой стороны, как уже указывалось, имеются соединения германия с оксикислотами и оксиазобензолом и его производными состава 1 4, а с первыми даже [c.207]

    В степени окисления +4 германий и его аналоги чаш,е всего имеют координационное число 6 и 4, что отвечает октаэдрической и тетраэдрической структурной единице. По мере увеличения размеров атомов при переходе от С и 81 к ряду Ое — 5п — РЬ координатационное число 4 становится все менее характерным. Напротив, становится более типичным координационное число 6. [c.426]

    Кристаллическая структура элементов В -подгруппы подчиняется правилу Юм-Розери, согласно которому координационное число фиксированного атома п = 8 — Ы, гд,е N — номер группы периодической системы, в которой находится данный элемент. Например, в кристаллическом иоде и броме (7-я группа) каждый атом имеет по одному ближайшему соседу, что соответствует молекулам Ь и Вгг. Эти молекулы связаны со своими соседями ван-дер-ваальсовыми силами, образуя молекулярные кристаллы. Селен и теллур (6-я группа) образуют кристаллическую структуру в виде спиральных цепочек с координационным числом 2. Атомы элементов пятой группы (Аз, 5Ь, В1) упаковываются в решетке с координационным числом 3 + 3. Углерод, кремний и германий (4-я группа) образуют типично ковалентные кристаллы с координационным числом 4. [c.168]

    В периодической таблице, показанной на рис. 14-8, кристаллы элементарных веществ подразделяются на металлические, ковалентные каркасные и молекулярные. В табл. 14-1 устанавливается зависимость между координационным числом атомов в кристалле и структурой элементарных твердых веществ. Большинство элементов кристаллизуются с образованием какой-либо металлической структуры, в которой каждый атом имеет высокое координационное число. К металлам отнесены и такие элементы, как олово и висмут, кристаллизующиеся в структуры со сравнительно низким атомным координационным числом, но все же обладающие ярко выраженными металлическими свойствами. Светлоокрашенная область периодической таблицы включает элементы со свойствами, промежуточными между металлами и неметаллами. Хотя германий кристаллизуется в алмазоподобную структуру, в которой координационное число каждого атома равно только 4, по некоторым из своих свойстг он напоминает металлы. [c.605]

    В степени окисления +4 германий и его аналоги чаще всего имеют координационное число 6 и 4. В степени окисления +2 координационные числа элементов более разнообразны. Наличие несвязывающей электронной пары обычно приводит к существенному искажению полиэдров. [c.482]

    Углерод и кремний относятся к неметаялическим элементам, олово и свинец —металлы, а германий — полуметалл. Максимальное ЧИСЛО ковалентных связей (координационное число) у атома углерода — четыре, у атомоа остальных элементов — шесть. [c.554]

    В частности, по ряду С—РЬ уменьшаются энергии связей Э—Э 83 (С—С), 53 (Si—Si), 45 (Ge—Ge ), 37 ккал/моль (Sn-Sn). С другой стороны, по тому же ряду увеличиваются координационные числа элементов. Например, у фтористых соединений максимальное координационное число углерода составляет четыре (в F4)i кремния и германия — шесть (в солях НаЭР ), олова и свинца — восемь (в соля Н4Эр8). По отношению к более объемистым галоидам максимальное координационное число кремния (и углерода) не превышает четырех, у Ge оно возрастает до шести только для хлора, а у Sn и РЬ — даже для иода. Как уменьшение устойчивости связей [c.642]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Вещество будет обладать полупроводниковыми свойствами, если в данном состоянии обеспечиваются условия образования насыщенных парноэлектронных связей хотя бы у одного из компонентов (у анионообразователя). В элементарных полупроводниках ковалентная связь образуется заполнением 5- и /з-орбиталей всех атомов. Эти полупроводники подчиняются так называемому правилу октета 8—М, согласно которому атом в ковалентном кристалле имеет 8—N ближайших соседей (уУ — номер группы Периодической системы). Так, кремний, германий и а-олово имеют координационное число 4 (Л = 4), для полупроводниковых модификаций фосфора, [c.318]

    Германий тоже кристаллизуется в решетке типа алмаза. Каждый его атом окружен четырьмя другими, находящимися на расстоянии 0,243 нм. Кристалл хорошо очищенного германия — полупроводник. Ширина запрещенной зоны при комнатной температуре 0,72 эВ. Электропроводность порядка 10 Ом" - м растет с температурой. Плавление германия сопровождается увеличением координационного числа от 4 до 7. Одновременно возрастает и межатомное расстояние до 0,28 нм [19, 33, 34]. Резкое изменение структуры при плавлении сопровождается очень большим приростом энтропии, Д5пл=28,85 Дж/К X Хмоль, и скачкообразным увеличением электропроводности. Жидкий германий — металл (подробнее см. [21, 33]). Фазовые диаграммы германия и кремния похожи. Кривые плавления имеют отрицательные производные с1Т1йР. [c.202]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    По природе связи твердые тела могут быть разбиты на четыре группы — ионные, атомные, молекулярные и металлические рещетки. Гомеополярные связи между атомами в атомных рещетках определяют координационное число (число валентностей) и расположение соседних атомов в соответствии с направлением валентностей. В алмазе атомы углерода имеют 4о-связи. Эти связи направлены к вершинам тетраэдра, в центре которого находится атом углерода. Подобное строение имеют и другие элементы четвертой группы периодической системы (германий, кремний, серое олово). [c.342]


Смотреть страницы где упоминается термин Германий координационное число: [c.189]    [c.197]    [c.428]    [c.147]    [c.188]    [c.184]    [c.157]    [c.287]    [c.318]    [c.159]    [c.162]    [c.271]    [c.242]    [c.379]    [c.153]    [c.358]   
Химия германия (1967) -- [ c.9 , c.11 , c.125 , c.139 , c.144 , c.146 , c.153 , c.154 , c.159 , c.163 , c.206 , c.256 , c.258 ]

Основы общей химии Том 2 (1967) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Координационное числ

Координационные по координационному числу

Число координационное



© 2024 chem21.info Реклама на сайте