Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий валентные состояния

    Наряду с классификациями элементов, прямо связанными с периодической системой (периоды, группы, подгруппы, ряды, блоки), исторически сложились еще иные, которые отражают те или иные существенные особенности соответствующих элементов, имеющие значение для рассматриваемой проблемы. Из числа этих классификаций для химического анализа имеет значение старейшее по происхождению деление элементов на металлы и неметаллы. Это деление первоначально основывалось и сейчас еще включает в себя состояние соответственных простых веществ при обычных условиях. В химическом отношении, что важно для аналитической химии, оно выражает тенденцию к образованию, по крайней мере в низших валентных состояниях, катионов (металлы) или анионов (неметаллы), причем речь идет как о простых анионах, так и о сложных (т. е. типа 8 - и МОг)-Для аналитической химии это деление издавна имеет колоссальное значение, так как катионы разделяют посредством ионных реакций с различными анионами (классический сероводородный метод качественного анализа, бессероводородные неорганические схемы анализа катионов), а анионы — соответственно с катионами. В последние десятилетия присоединились ионообменные методы разделения и методы разделения ионов с помощью электролиза. Кроме металлов и неметаллов, часто в последнее время различают еще полуметаллы, или иначе металлоиды (что не следует путать с устаревшим применением термина металлоид как синонима слова неметалл ). К ним относятся элементы, обладающие как в виде простых веществ, так и в соединениях промежуточными свойствами бор, кремний, германий, мышьяк, сурьма, теллур, астат. [c.15]


    Некоторые элементарные вещества и среди них в первую очередь германий отличаются полупроводниковыми свойствами. Эти свойства обусловлены особым состоянием электронов в кристаллической решетке полупроводников. Германий по структуре кристаллов напоминает алмаз. Каждый атом германия связан с четырьмя другими ковалентными связями. Однако в отличие от алмаза в кристаллах германия валентные электроны закреплены непрочно и под влиянием нагревания или облучения могут, возбуждаясь, отрываться от связываемых ими атомов и свободными уходить в междуузлия решетки. Наличие таких свободных электронов в кристаллах германия сообщает ему некоторую электронную проводимость. При переходе электрона в свободное состояние у данного атома остается свободная орбиталь, так называемая д ы р к а . Эта дырка может заполниться при перескоке валентного электрона соседнего атома, в котором тогда возникает новая дырка. Если при наложении электрического поля свободные электроны будут передвигаться к положительному полюсу, то дырки будут передвигаться к отрицательному полюсу. Это передвижение дырок, равносильное передвижению положительных зарядов, сообщает кристаллам германия еще так называемую дырочную проводимость. В совершенно чистом германии в каждый данный момент число дырок равно числу свободных электронов. Это обусловливает равное значение электронной (п) и дырочной р) проводимости в общей электропроводности чистого германия, значение которой очень невелико. Однако соотношение между числами свободных электронов и дырок в кристалле германия можно изменить. Если в германий ввести даже очень незначительную примесь, например мышьяка, в атомах которого на наружном уровне находится пять электронов, то в кристаллической решетке твердого раствора замещения число свободных электронов окажется больше числа дырок и электронная проводимость в этом случае будет играть решающую роль. Наоборот, если ввести в германий примесь галлия, на наружном уровне атомов которого имеется только три электрона, то число дырок в кристаллической решетке раствора замещения станет превышать число свободных электронов и решающая роль будет уже принадлежать дырочной проводимости. Однако в случае образования с элементарным полупроводником твердого раствора внедрения примесь активного металла усиливает элек- [c.205]


    Главную подгруппу IV группы периодической системы элементов составляют углерод, кремний, германий, олово и свинец, На внещнем электронном слое этих элементов содержится 4 электрона, электронная формула внешнего слоя пз пр . В основном состоянии атома не спарены 2 электрона. Один 5-электрон может возбуждаться, переходя на внешнюю р-орбиталь, в результате чего у атома становится 4 неспаренных электрона. Таким образом, для элементов главной подг группы IV группы характерна валентность 2 и 4. [c.239]

    Проверка пригодности экстрагента. Явления постепенного ослабления окраски экстрагируемой комплексной соли могут быть обусловлены как некоторыми свойствами, присущими данному соединению красителя, так и наличием специфических загрязнений в водной фазе или, чаще, в экстрагенте. В первом случае применяют обязательную стабилизацию экстракта ацетоном (методы определения германия и тантала). Помехи второго вида наблюдаются главным образом при определении элементов, экстрагируемых в высшем из возможных валентных состояний,— сурьмы (V), золота (П1), таллия (1П) Для проверки пригодности вновь поступившей партии (бутыли) экстрагента (бензола или толуола) экстрагируют, руководствуясь прописью Определения, количества элемента, близкие к й мин и макс, и измеряют оптическую плотность экстрактов сразу после расслоения фаз затем оставляют раствор в кювете, закрытой покровной пластинкой, на 15—20 мин. в затемненном месте и повторяют измерение. Данные второго измерения могут быть несколько ниже, чем первого (результат отстаивания экстракта), но после второго измерения они не должны изменяться по меньшей мере в течение 1—2 час. отношение оптических плотностей первого и второго экстрактов (за вычетом холостого опыта) должно быть не меньшим, чем отношение отобранных в первом и втором случаях количеств элемента. [c.162]

    Амфотерность гидроокисей проявляется также у бериллия, титана, галлия, германия, циркония, молибдена, индия, тория, урана и некоторых других элементов. При этом степень амфотерности сильно зависит от валентного состояния элементов, что создает дополнительные возможности для разделения и обнаружения их. [c.94]

    Образование летучих соединений германия полукоксов углей при их сжигании и термической обработке зависит главным образом от температуры процесса, характера газовой среды и степени метаморфизма угольного вещества. Добавление водяного пара в воздушное дутье интенсифицирует переход германия в летучие соединения. При этом они улетучиваются в виде моноокиси и двуокиси германия. По-видимому, летучая моноокись германия переходит в газовую фазу как промежуточное соединение, которое в последующем окисляется до 4-валентного состояния. [c.79]

    Совсем иначе организованы полимерные тела, например алмаз, германий, кремний, серое олово. Каждый атом (Связан здесь с четырьмя другими, расположенными в углах правильного тетраэдра (рис. 9). Все вместе они образуют огромную молекулу полимерного тела. Валентному состоянию зр -гибридизации отвечает образование четырех ковалентных а-связей, направленных под углом 109°23, т. е. тетраэдрическая координация. [c.39]

    Среди элементов четвертой группы в виде полимерных тел могут сушествовать углерод, кремний, германий и олово. Валентное состояние углерода при построении полимеров соответствует или хр -гибридизации  [c.100]

    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р--=К 1п. Поэтому проводимость таких примесных полупроводников п-типа осуществляется в основном за счет свободных электронов в зоне проводимости. Если же атомы примеси резко увеличивают число дырок в валентной зоне, то растет дырочная проводимость и соответственно уменьшается число свободных электронов п = Кз/р- Такого рода примеси называются акцепторами электронов, а полупроводники с дырочной проводимостью — полупроводниками /7-типа. Акцепторами электрона для германия служат атомы галлия. В присутствии примесей соотношение (28.2) в объеме полупроводника уже не остается справедливым. Вместо него следует записать [c.141]

    Для германия более характерными являются кислородные соединения. Здесь ярче проявляются оба главных валентных состояния германия, причем производные двухвалентного германия менее устойчивы. [c.96]

    При дегидрировании бутанола-2 на германии геометрические соотношения также могли оказаться решающими для проявления высокой каталитической активности грани (100). На рис. 4 показано тетраэдрическое валентное состояние германия в кристаллической решетке, имеющей структуру алмаза. Изобран енный черным кружком атом германия в центре должен рассматриваться как атом поверхности. При разрезе, параллельном грани (100), у этого атома остаются на поверхности две свободные остаточные валентности. При разрезе, параллельном (111), остается только одна свободная валентность. В случае не показанного на рисунке разреза, параллельного (110), у поверхностного атома также остается только одна свободная валентность. [c.22]


    Как известно, поверхностные атомы кристалла имеют ненасыщенные валентности и поэтому могут вести себя как акцепторы, принимая электроны в валентную оболочку. Это подтверждено исследованиями на чистой поверхности германия. Уровни поверхностных состояний (уровни Тамма) могут расщепляться в зоны. Они перекрываются с зонами объемных состояний, вследствие чего обнаруживается поверхностная проводимость. Кристаллы германия и кремния в обычных условиях всегда окислены с поверхности и на них могут адсорбироваться различные ионы (гл. VI). В зависимости от характера внешней среды и от способа обработки поверхности полупроводника поверхностные состояния могут иметь характер доноров и акцепторов. Если преобладают акцепторные состояния, то при их заполнении электронами создается отрицательный объемный заряд вблизи поверхности. При преобладании донорных состояний может возникнуть положительный объемный заряд. [c.250]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]

    Кроме сополимерных силоксанов, в которых присутствуют звенья с разными органическими заместителями, были получены также сополимеры с другими металлоорганическими звеньями в основной цепи. Большинство исследований в этой области было проведено Андриановым, в работе которого [108] приведен обзор, посвященный указанному вопросу. В цепи силоксановых полимеров и в их сетки вводили атомы таких металлов, как алюминий, титан, свинец, олово и германий. Получение полимеров высокого молекулярного веса, содержащих эти металлы в основной цепи, представляет некоторые трудности. Б связи с возможностью разнообразных валентных состояний атомов металлов в сополимерах и чрезвычайно высокой термической устойчивостью связей М—О—Si в этих полимерах были получены только продукты типа комплексов. Автору настоящего обзора не удалось найти в литературе данных о выделении в виде индивидуальных соединений соответствующих циклических структур, которые можно было бы затем полимеризовать в линейные продукты с высоким молекулярным весом (речь идет о сополимерах, содержащих титан и алюминий). [c.475]

    Однако свободные валентности на поверхности алмаза и алмазоподобных твердых тел кремния и германия, если и образуются, то сразу же вступают во взаимодействие друг с другом, в результате чего поверхностные состояния Шокли исчезают тем легче, чем слабее межатомные связи и подвижнее атомы. При этом поверхность в большей или меньшей мере перестраивается. [c.111]

    Рассмотренное состояние кристалла германия энергетически можно себе представить так (рис. ХХ-1) валентная зона включает [c.454]

    У кремния и германия последняя оболочка не заполнена (см. табл. 3) в ней в р-состоянии имеется по два электрона с параллельными спинами. Поскольку зона проводимости и валентная зона у них включают р-состояния, для которых вырождение в кристалле снимается, то в каждой из них имеется по три раз- [c.235]

    Наиболее простым дефектом является примесный атом пятой или третьей группы таблицы Менделеева, Рассмотрим, например, атом мышьяка в германии. Мышьяк имеет пять валентных электронов. Для реализации ковалентной связи с ближайшими соседними атомами кремния требуется четыре электрона пятый электрон связан положительным зарядом иона. В этом связанном состоянии электрон обладает более низкой энергией, чем электрон, находящийся в зоне проводимости. При высокой температуре под влиянием тепловых колебаний связанный электрон может отрываться от иона мышьяка и перемещаться как свободный электрон иными словами, электрон может перейти в зону проводимости. Такого рода примеси или дефекты кристаллической решетки называют донорами. В основном состоянии они нейтральны, а при возбуждении дают положительно заряженный ион и один свободный электрон. [c.239]

    Уровни Шокли 1939 г.). Шокли первый показал [13, с. 11 ], что поверхностное состояние может появиться в алмазе, кремнии, германии, даже если аир одинаковы внутри и на поверхности кристалла оно появляется в запрещенной зоне. Состояния Шокли представляют собой в обычном смысле свободные валентности на поверхности. Четыре валентных электрона элементов IV группы распределены по четырем атомным орбиталям, если атом изолирован — один по 5-орбитали и три по р-орбитали (см. гл. I). В случае связи с другими атомами обычно рассматривается тетраэдрическая 5р -гибридизация валентных электронов. С учетом спина имеется восемь состояний — четыре из них заняты в связи, у четырех остальных энергия гораздо выше. Если связи состав- [c.449]

    Гибридизация одной s- и трех р-орбиталей (sp -гибридизация), как уже указывалось, объясняет валентности углеродного атома. Образование sp -гибридных связей характерно также и для аналогов углерода — кремния и германия валентности этих элементов также имеют тетраэдрическую направленность. Может возникнуть вопрос — если гибридные орбитали обеспечивают большую концентрацию электронного облака между ядрами и, следовательно, более прочную связь, то почему они не возникают в НаО л NH3 На да шый вопрос следует ответить, что направленность связей в этих соединениях также можно объяснить sp -гибридизацией. Такой подход является даже более точным, чем изложенный на стр. 161 и 162. Не следует, однако, забывать, что оба подхода являются приближенными. При образовании молекулы HjO атом кислорода люжет приобретать конфигурацию наружного слоя где Ф2, Фз и — sp -гибридные волновые функции верхние индексы указывают количество электронов, занимающих данную орбиталь. Таким образом, две из четырех гибридных орбиталей атома кислорода заняты неспаренньши электронами и могут образовать химические связи угол между этими связями должен составлять 109,5°. Это значение ближе к экспериментальному (104,5°), чем величина 90°, даваемая схемой, рассмотренной на стр. 161. Однако если на стр. 161—162 пришлось объяснять отклонение теоретической величины от экспериментальной для молекулы HjO, то здесь нужно объяснить, почему углы между связями у аналогов воды HjS, HaSe и НаТе заметно отличаются от 109,5°. Это объясняется действием ряда факторов. В частности, в соединениях, содержащих большие атомы, связь слабая и выигрыш энергии в результате образования связи гибридными орбиталями не компенсирует некоторое возрастание энергии s-электронов, обусловленное их переходом на sp -гнбридные орбитали. Это препятствует гибридизации. Кроме того, как показали точные расчеты, при образовании связи Э—Н 25-орбитали кислорода (и азота) сильнее перекрываются с ls-орбиталями водорода, чем 2р-орбита-ли. Для аналогов кислорода, наоборот, сильнее перекрываются р-орбитали. Это обусловливает больший вклад s-состояний (гибридизацию) в образование химической связи в молекуле Н О, чем в ее аналогах. Поэтому валентные углы в H2S, HjSe и НаТе близки к 90°. [c.168]

    Для германия и олова наиболее характерно валентное состояние со степенью окисления 4-4, а для свинца — со степенью окисления 4-2. Различную стабильность состояний 4-4 и 4-2 для этих элементов иллюстрирует опыт по окислению кислородом соответствующих простых веществ. Так, при сжигании германия, олова и свинца в атмосфере кислорода образуются, с одной стороны, двуокиси германия (IV) и олова (IV) (ОеОа и ЗпОа) и, с другой стороны, окись свинца (II) (РЬО). В то время как соединения двухвалентных германия и олова проявляют восстановительные свойства, соединения четырехвалентного свинца — сильнейшие окислители. Другая важная для общей характеристики подгруппы тенденция — п.зменеиие кислотно-основных свойств химических соединений. Обычно для этой цели рассматривают свойства окислов и гидроокисей. Поскольку элементы главной подгруппы IV группы образуют два ряда окислов (и гидроокисей), различающихся и по кислотно-основным свойствам, и по окислительно-восстановительной стабильности, удобно охарактеризовать эти тенденции в одной схеме (на примере гидратов окисей)  [c.185]

    Были основания предполагать [7], что фториды четырехвалентного ванадия будут в целом сходны с фторидами германия или циркония. Однако исследование системы НР — УОг — НгО показало, что двуокись ванадия существенно отличается по своему взаимодействию со фтористоводородной кислотой. Основным продуктом фторирования двуокиси является оксифторид УОРг, который кристаллизуется в форме двух гидратов УОРг 4НгО и У0р2 2Н20. Тетрафторид ванадия не образуется вплоть до 71,07% НР. Четырехвалентному ванадию оказалась более присуща группа ванадила Ю+ . В этом смысле граничит с элементами, для которых кислородные соединения более характерны и которые в высшем валентном состоянии не образуют фторидов, соответствующих их валентности. К числу таких элементов относятся шестивалентный хром и семивалентный марганец. [c.91]

    Циглер и его сотрудники в Институте исследования угля им. Макса Планка (Мюльгейм-Рур, Германия) в первую очередь интересовались полимеризацией этилена и его. сополиморизацией с а-олефинами. После того как Циглер опубликовал подробности своей работы в одном из патентов, Натта с сотрудниками в Институте промышленной химии (Милан), исследуя комбинации катализаторов и сокатализаторов для полимеризации а-олефинов, которые они назвали катализаторами Циглера, добились успеха в синтезе полимеров пропилена, бутена-1, стирола и др., имеющих определенную пространственную структуру [18]. В результате этой работы, включавшей исследования пространственной структуры полимеров, было показано, что комбинации соединений переходных элементов IV—VIII групп в низшем валентном состоянии образуют комплексы с гидридами или алкилами металлов. Эти комплексы характеризуются присутствием твердой фазы и способны стереоспецифически полимеризо-вать а-олефины с образованием кристаллических стереоизомерных полимеров. Работы Натта и его сотрудников, которые представляются образцовыми по технике эксперимента, в дополнение к успешному решению сложной задачи исследования структуры полимеров, привели к открытию возможностей контроля полимеризации и выделения различных изомерных полимеров. Упомянутые работы позволили также выяснить механизмы этих реакций полимеризации. [c.102]

    Характеристика элементов. При переходе сверху вниз по подгруппе германия уменьшается роль внешней электронной пары, находяшейся в -состоянии, и возрастает участие в образовании химических связей и /-орбиталей внутренних уровней. Для свинца становится более стабильна степень окисления +2, у олова различие состояний +2 и +4 проявляется менее резко. Уменьшение характерных степеней окисления объясняется возрастанием энергии, необходимой для перевода атомов из в хр -валентное состояние. Из-за возрастания роли внутренних орбиталей повышается координационное число до 6. [c.331]

    В химич. соединениях С. гл. обр. 2-валентен. По сравнению с болое легкими элементами той же подгруппы — германием и оловом, 4-валентное состояние для С. мало устойчиво. Поэтому соли РЬ (II), в отличие от солей Се (II) и 8п (II), не являются восстановителями. 2-валентный С. образует растворимые в воде нитрат, хлорат и ацетат, мало растворимые хлорид и фторид и нерастворимые сульфат, карбонат, хромат, фосфат, молибдат, сульфид (см. Свинца сульфаты, Свинца карбонат. Свинца нитрат. Свинца хромат. Свинца ацетаты). Хорошо растворим также кремнефторид РЬ81Р , получаемый растворением РЬО илн карбоната в Н281Рв и служащий электролитом при рафинировании С. [c.381]

    Растворы, содержащие германий (предельная концентрация 10 , открываемый минимум 0,25 мкг), после смешения их с раствором молибдата аммония, азотной кислотой, уксуснокислым бензидином или ацетатом натрия окрашиваются в синий цвет. Перед проведением реакции необходимо полностью удалить фосфор и К )емний. Резко понижает чувствительность As ", поэтому его следует или удалять, или переводить в высшее валентное состояние. [c.295]

    Некоторые соединения ионного типа, являясь стехиометрическими соединениями, содержат не дефекты структурного типа, а ноны, находящиеся в двух различных валентных состояниях. Примером такого типа соединений являются Рез04 (магнетит) и С03О4. В элементарной ячейке магнетита содержится 32 иона кислорода и 24 полол<ительных иона железа, из них 8 ионов Fe + и 16 ионов Fe +. Электронная проводимость, а также магнитные и оптические свойства этих соединений объясняются легкостью переходов между двух- и трехвалентными катионами. Такие соединения являются полупроводниками с собственной проводимостью. Проводимость является их природным свойством, а не обусловлена введением примесей (допоров или акцепторов), как это наблюдается, например, в кристаллах кремния или германия. [c.468]

    Исследования показали, что апиопитовая суспензия поглощает соедииения германия из газообразных продуктов горения. Это, по-видимому, означает, что полукокс газового угля выделяет прн го])епни в газовую фазу летучую моноокись германия как промежуточное соединение, которое в дальнейшем окисляется до 4-валентного состояния, в результате чего анионитовая суспензия поглощает двуокись германия. [c.77]

    IV группа, главная подгруппа углерод, кремний, германий, олово, свинец. На внешнем уровне атомов этих элементов по четыре электрона В невозбужденном состоянии неспаренные только два р-электрона. Такому состоянию соответствует валентность элементов, равная двум, и степень окисления +2. Соединения со степенью окисления +2 неустойчивы, отличаются высокой восстановительной активностью, например ЗпС12восстанавливает НаЗО до ЗОг  [c.230]

    В действительности между металлами и неметаллами нет достаточно четкой границы. Некоторые элементы, расположенные вдоль разделяющей диагонали, обладают свойствами, промежуточными между металлическими и неметаллическими (например, германий, сурьма и теллур). Элементы с переменной валентностью ведут себя как металлы в нижнем валентном состоянии и проявляют свойства неметаллов в высшем валентном состоянии. Эти промежуточные элементы называются металлоидами. Размытость границы между металлами и неметаллами проявляется не только в этом кремний и иод имеют металлический блеск, а иод может даже образовывать положительные ионы, хотя оба этих элемента относятся к неметаллам. Элементы, расположенные по другую сторону границы, такие, как алюминий, свинец, сурьма и висмут, прояв-. ляют амфотерные свойства. [c.65]

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]

    Особенности строения электронных оболочек атомов элементов IV группы обусловливают способность их проявлять переменную валентность (степень окисления). Но если углерод и кремний образуют главным образом соединения, где они четырехвалентны, то для германия, олова и свинца в равной мере возможны и двух- и четырехвалентное состояния, причем устойчивость двухвалентного состояния повышается от германия к свинцу. Это объясняется тем, что у меньших по объему атомов углерода и кремния (и в какой-то мере германия) легко осуществляется 5р -гибридизация, вследствие чего образуется четыре равноценные ковалентные связи. С ростом радиуса атомов склонность орбиталей к гибридизации уменьшается, а удаление неспареиных электронов с р-орбиталей олова и свинца осуществляется легче, чем спаренных электронов с 5-орбиталей. [c.184]

    С электронной теорией близко связаны представления об особой роли металлов с недостроенными -орбиталями, в первую очередь металлов УП группы Ге, Со, N1, Pt, Р(1, 1г, КЬ, а также примыкаюп] их к ним Си, А , отчасти 7п, 0(1, меньше — Аи. Переход электрона с с -оболочки во внешнюю х-оболочку (и наоборот) приводит к образованию свободных валентностей,обеспечивающих протекание гетерогенно-каталити-чесхшх реакций. Ориентировочно рассчитав относительное число свободных валентностей (статистический вес д-состояний), можно сопоставить его с удельной (на единицу поверхности) каталитической активностью металла. На примере гидрирования этилена установлена линейная связь между логарифмом удельной активности и статистическим весом -состояния. Однако нельзя утверждать исключительность роли недостроенных -оболочек для каталитической активности. Так, на примере германия было показано существование металлических катализаторов, атомы которых не имеют недостроенных -оболочек. Были также рассмотрены взаимодействия реагирующих молекул с катализатором в рамках представлений об образовании комплексов. [c.304]

    Механизм явления полупроводимости для случая собственного полупроводника (например, кристалла германия) можно представить при помощи такой энергетической схемы. Каждый атом германия содержит 4 валентных электрона 4зЧр (табл. ХХ-1). В невозбужденном (нормальном) состоянии атома элемента все эти электроны связаны со своими атомными остовами. Наложение на кристалл обычного электрического поля не может порвать указанную связь (для этого требуются поля, соразмерные с внутриатомными), и валентные электроны не являются носителями тока. [c.454]

    Химические связи в галогенидах германия и кремния являются насыщенными, полярными. Из-за одновалентности галогенов и насыщенного характера связей внутри молекулы ОеГ4, между отдельными молекулами типа ОеГ4 могут действовать только молекулярные, но не валентные силы. Межмолекулярные силы обычно значительно слабее валентных химических связей (см. 9), и поэтому галогениды германия и кремния уже при невысоких температурах (от 200 до ТОО"" К) распадаются на отдельные молекулы, т. е. переходят в газообразное состояние. В этом отношении галогениды принципиально отличаются от соединений германия и кремния с кислородом. Действительно, вследствие двухвалентности кислорода могут образовываться твердые тела, все атомы которых связаны между собой химическими связями. Такая возможность отсутствует у галогенидов, обладающих повышенной летучестью, т. е. способностью к испарению [c.97]

    Проводя аналогичные вычисления для гибридных волновых функций фз и ф4, убедимся, что в состоянии 25р -гибридизации валентные связи углерода имеют тетраэдрическую направленность. Образование П5р -гибридных связей характерно для аналогов углерода — кремния, германия и олова. Но у элементов Si, Ge и а — Sn в отличие от С в оболочке ns p имеются незанятые 3d-, 4d- и 5d-ypoBHH, которые могут проявляться при образовании связей с / атомами других элементов. [c.129]

    Электропроводность кристалла при Т = О равна нулю, если валентная зона полностью занята и отделена зоной разрыва от следуюш,ей, более высокой, разрешенной зоны. Проводимость появляется лишь при Т > О, когда часть электронов, расположенных вблизи верхнего края валентной зоны, переходит в более высокую, разрешенную зону, которую называют зоной проводимости (рис. 28, а). Величина проводимости зависит от ширины запреш,енной зоны ео и температуры кристалла. Значение ео определяет различие между полупроводниками и изоляторами. Если ширина запрещенной зоны ео велика, то для переброски в зону проводимости электронам требуется сообщить высокую энергию. Даже при сравнительно высоких температурах ео > кТ, так что валентная зона остается практически полностью занятой, а зона проводимости — полностью свободной. Кристалл проявляет свойства изолятора. Примером может служить алмаз, для которого ширина запрещенной зоны 6—7 эВ . Если величина ео ср авнительно невелика, как в случае германия (0,72 эВ), то уже при невысоких температурах заметное число электронов переходит из валентной зоны в зону проводимости. В валентной зоне появляются свободные места — дырки . Поскольку незанятые состояния имеются как в валентной зоне, так и в зо- [c.187]

    Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон, разделенных запрещенными зонами. Если электроны образуют в атомах или моле1<улах законченную группу, то прн образовании из них твердого или жидкого вешества созда ются зоны с полностью заполненными уровнями, поэте му такие вещества при абсолютном нуле имеют свойства изоляторов. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, а-олова, соединений тяпа А" В , А В , Si каждый атом связан единичными ковалентными связями с четырьмя ближайпгими соседними, так что вокруг него образуется законченная группа электронов s p и валентная зона оказывается заполненной. Необходимо подчеркнуть, что полупроводники и диэлектрики отличаются от Металлов тем, что валентная зона у них при Гл О К всегда полностью заполнена электронами, а ближайшая свободная зона (зона проводимости) отделена от валентной зоной запрещенных состояний. Ширина запрещенной зоны АЕ у полупроводников — от десятых долей до 3 эВ (условно), а у диэлектриков — то 3 до 5 эВ (условно). Если между полупроводниками и диэлектриками имеется только количественное различие, то отличие их от металлов качественное. Чтобы проходил ток в металле, не требуется никакого другого воздействия, кроме наложения электрического поля, так как валентная зона в металле не заполнена или перекрывается с зоной проводимости (рис. 71, а). [c.292]


Смотреть страницы где упоминается термин Германий валентные состояния: [c.151]    [c.100]    [c.88]    [c.102]    [c.111]    [c.454]    [c.231]    [c.242]    [c.379]    [c.311]   
Химия германия (1967) -- [ c.7 , c.99 , c.100 , c.256 ]




ПОИСК







© 2025 chem21.info Реклама на сайте