Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные катиона

    Ниже перечислены электронные конфигурации десяти различных атомов. В каждом случае укажите, относится ли указанная конфигурация к нейтральному атому, его положительному иону (катиону) или отрицательному иону (аниону). Кроме того, укажите, соответствует ли записанная конфигурация основному, возбужденному или запрещенному состоянию. [c.411]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]


    Химическое разложение электролита под действием электрического тока. При электролизе положительные ионы (катионы) двигаются к катоду, а отрицательные ионы (анионы) - к аноду, при этом на электродах эти ионы разряжаются. [c.95]

    Ион (катион) слишком гидрофилен, чтобы эффективно проникать через толстый ( 10 нм) гидрофобный слой липидов и липопротеинов, входящих в состав природны.< и искусственных мембран. Однако селективно связываясь с полярными группами, находящимися внутри макроциклического кольца, катион оказывается покрытым гидрофобной оболочкой, что позволяет ему легче проходить через мембрану. [c.282]

    Активными называются вещества, в результате превращения которых в процессе реакции получается электрическая энергия. Обычно активным веществом гальванического элемента является отрицательно заряженный электрод - анод, на котором идет реакция окисления. На положительно заряженном электроде - катоде идет реакция восстановления. При работе химического источника тока отрицательно заряженные частицы (анионы) перемещаются к аноду, а положительно заряженные ионы (катионы) движутся к катоду. Количественное соотношение между химическим превращением вещества на электродах и электрической энергией определяется законами Фарадея. [c.35]

    Особое место в измерении pH растворов занимает стеклянный электрод, широко используемый в настоящее время благодаря ряду его преимуществ (большая селективность, неподверженность отравлению, отсутствие влияния сильных окислителей и восстановителей и пр.). Механизм возникновения потенциала на поверхности стеклянного электрода не является электрохимическим, он в принципе относится к мембранным ионоселективным электродам, которые в последние годы все чаще применяют для определения активности (концентрации) самых различных ионов (катионов и анионов) и привели к возникновению нового раздела прямой потенциометрии — ионометрии. [c.104]

    Если два одинаковых электрода погружены в растворы одного и того же электролита, но различной активности, образуется концентрационная цепь // рода. Такая цепь определяется как катионная или анионная в зависимости от природы ионов (катионов или анионов), по отношению к которым обратимы электроды. Возникновение э. д. с. в концентрационной цепи I рода связано с переносом электролита из более концентрированного раствора в более разбавленный. Поскольку такой перенос приводит к возникновению на границе двух растворов диффузионного потенциала, величину последнего необходимо принимать во внимание при расчетах э. д. с. [c.80]


    Ионная (электровалентная, или гетерополярная) связь. С помощью ионной связи построено большинство неорганических соединений. Эта связь возникает между атомами, которые сильно отличаются по электроотрицательности. Процесс образования связи состоит в передаче электрона от одного атома к другому. Отдавая электрон, атом превращается в положительный ион — катион, а второй атом, приобретая этот электрон, переходит в отрицательно заряженную частицу — анион. Образовавшиеся противоположно заряженные ионы связываются силами электростатического взаимодействия. Схематически это можно представить так  [c.19]

    Металлические кристаллы (рис. 1.9, в) состоят из положительно заряженных ионов — катионов, между которыми размещаются покинувшие свои атомы электроны — так называемый электронный газ. Природа связи в этих кристаллах обусловлена электростатическим взаимодействием катионов с электронным газом. Энергия связи в решетке металлического типа на порядок меньше, чем в решетке вышерассмотренных типов и составляет 80— 120 кДж/моль. Поэтому их представители обладают меньшей твердостью, более низкой температурой плавления и большей летучестью, чем тела с рассмотренными типами структуры. Наличие свободных электронов в решетках металлического типа обуславливает высокую тепло- и электропроводность, а также — характерную для металлов пластичность (ковкость). Представителями кристаллов металлического типа являются исключительно металлы. [c.37]

    Отсюда растворимость, выраженная количеством грамм-ионов катиона В в 1 у , равна  [c.36]

    Какой из ионов (катион или анион) подвергается в их соединениях большой взаимной поляризации Как поляризация сказывается на прочности связи  [c.35]

    В процессе образования гидрофобного золя рост ядра в той или иной стадии может быть приостановлен созданием так называемого адсорбционного слоя из ионов стабилизатора. Ионная сфера вокруг ядра коллоидной мицеллы состоит из двух слоев (или двух сфер) — адсорбционного и диффузного. Адсорбционный слой слагается из слоя потенциалопределяющих ионов, адсорбированных на поверхности ядра и сообщающих ему свой заряд, и части противоионов, проникших за плоскость скольжения и наиболее прочно связанных электростатическими силами притяжения. Вместе с ядром эта ионная атмосфера образует как бы отдельный гигантских размеров многозарядный ион — катион или анион, называемый гранулой. Диффузный слой, расположенный за плоскостью скольжения, в отличие от адсорбционного не имеет в дисперсионной фазе резко очерченной границы. Этот слой состоит из противоионов, общее число которых равняется в среднем разности между всем числом потенциалопределяющих ионов и числом противоионов, находящихся в адсорбционном слое. [c.318]

    Опыт показывает, что изменение вязкости в значительной мере зависит от валентности ионов, противоположных по заряду коллоидной частице. Так, если золь агар-агара заряжен отрицательно, эффект изменения его вязкости будет вызываться положительно заряженными ионами — катионами. С увеличением валентности катионов относительная вязкость агар-агара при данной концентрации электролитов уменьшается. [c.336]

    В предьщущих главах учебника уже отмечалось, что металлические элементы обладают характерным свойством - они теряют электроны в химических реакциях. Разумеется, образующиеся положительно заряженные ионы (катионы) не остаются изолированными, а существуют в окружении анионов, в результате чего сохраняется равновесие зарядов. Кроме того, катионы металлов обладают свойствами льюисовых кислот (см. разд. 15.10). Это означает, что они способны связываться с нейтральными молекулами либо анионами, если таковые обладают неподеленными парами электронов. Мы уже неоднократно упоминали о таких соединениях, в которых катион металла окружен группой анионов или нейтральных молекул. Например, о частице Л (СН)2 мы говорили в разд. 22.6, где обсуждались проблемы металлургии в разд. 10.5, ч. 1, где рассматривалась способность крови к переносу кислорода, упоминался гемоглобин, а в разд. 16.5 при обсуждении равновесий мы встречались с частицами Си(СН)4 и Л (ЫНз)2. Подобные частицы называются комплексными ионами или просто комплексами, а соединения, содержащие такие ионы,-координационными соединениями. [c.370]

    Катионактивные вещества при диссоциации в воде образуют положительно заряженные поверхностно-активные ионы (катионы)  [c.9]

    К отрицательному электроду — катоду подходят положительно заряженные ионы — катионы, которые получают электроны от электрода. Пример катодной реакции [c.361]

    Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд, например, положительный трехзарядный ион алюминия обозначают А1 +, отрицательный однозарядный ион хлора — С1 . Для ионов, как и для атомов, существует несколько систем радиусов. На их размеры влияют такие факторы, как количество ближайших ионов в узлах кристаллической решетки (называемое координационным числом) и их электронное состояние (заряд, размер и др.). Поэтому наиболее индивидуальным радиусом иона так же, как и для атома, можно считать его орбитальный радиус. Потеря атомом электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов — к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего электронейтрального атома  [c.82]


    Данная работа является простейшим введением в качественный анализ. В качественном анализе неорганических веществ исследуют растворы электролитов и анализ сводится ч обнаружению (открытию) отдельных ионов (катионов или анионов). [c.254]

    Если комплексный ион — катион, то для названия комплексообразователя используют русское название элемента и указывают его степень окисления (в скобках римской цифрой). Если комплексный ион—анион, то используется латинское название элемента-комплексообразователя, к которому прибавляется окончание ат , и указывается римской цифрой в скобках заряд иона. У нейтральных комплексов (без внешней сферы) центральный атом называется в именительном падеже, а его степень окисления не указывается. [c.391]

    Металлическая решетка является разновидностью атомной и отличается тем, что в ее узлах находятся атомы и положительно заряженные ионы (катионы). В пространстве между узлами перемещаются электроны, обеспечивающие электронейтральность вещества. Эти подвижные электроны придают металлам характерные свойства металлический блеск, высокие электропроводность и теплопроводность, пластичность и др. На рис. 4.6 изображена элементарная ячейка металлического натрия, координационное число атома натрия равно 8. [c.162]

    Электро- лит Коагулирующий ион (катион) V. моль/м Электролит Коагулирующий иоп (анион) v< моль/м  [c.230]

    Экспериментальные данные показывают, что энергии сольватации ионов (катионов и анионов), имеющих одинаковые вакантные орбиты, близки не только в одном растворителе, по и в разных растворителях, если молекулы этих растворителей содержат атомы, являющиеся донорами электронов, находящихся на одинаковых энергетических уровнях. Так, энергии сольватации одних и тех же ионов в кислород- и азотсодержащих растворителях близки, поскольку кислород и азот являются донорами электронов, находящихся на уровне п = 2. [c.179]

    Как известно, кристаллическая решетка металла состоит из положительно заряженных ионов (катионов), удерживаемых общим электронным облаком. Все металлы характеризуются свойством в большей или меньшей степени растворяться в воде, причем в раствор переходят только катионы. Полярные молекулы воды извлекают из кристаллической решетки ме- [c.144]

    Расчет К S использованием найденных так параметров атом-ионного (катионного) потенциала дает близкие к имеющимся экспериментальным значениям результаты для цеолита КХ с тем же отношением Si/Al. При изменении этого отношения, например при переходе от адсорбции благородных газов цеолитом NaX к адсорбции цеолитом NaY, коэффициент р изменяется. [c.214]

    Важная особенность растворов электролитов — способность проводить электрический ток. Если приложить к раствору электролита постоянное напряжение, то положительно заряженные ионы — катионы станут перемещаться в направлении отрицательно заряженного катода, а отрицательно заряженные ионы — анионы — в направлении положительно заряженного анода. В результате этого через раствор пойдет электрический ток. В отличие от металлов, в которых переносчиками заряда являются электроны, в растворах электролитов электрический заряд переносят ионы. В поле с напряженностью S на нон, несущий г единиц элементарного заряда, т. е. имеющий за- [c.125]

    Если приложить постоянное электрическое поле к раствору электролита, то положительно заряженные ионы — катионы — начинают перемещаться в направлении отрицательно заряженного катода, а отрицательно заряженные ионы — анионы —в сторону положительно заряженного анода. Возникает перенос ионов — электрофорез. Одновременно возникает направленный перенос электрического заряда, т. е. электрический ток. Поэтому растворы электролитов являются проводниками электрического тока. В отличие от металлов, у которых проводимость обусловлена перемещением электронов, в растворах электролитов переносчиками электрического заряда являются ионы. [c.326]

    На электродах, с помощью которых к раствору электролита подается напряжение, происходят электрохимические превращения ионов. Катионы на катоде получают электроны и восстанавливаются. Судьба образующихся при этом частиц может быть различна. Например, ионы Zп +, восстанавливаясь до атомов 2п, образуют металлический цинк, оседающий на катоде. Ионы Н+ на катоде восстанавливаются до атомов Н, которые рекомбинируют, образуя газообразный водород Иг- Ионы Ыа+ восстанавливаются до атомов N3, которые тотчас же реагируют с водой, давая молекулы Иг и КаОН. На аноде происходит окисление анионов. Например, анион С1 окисляется до атомов С1, отдавая электроды аноду. Если электрод сделан из инертного металла, не способного реагировать [c.329]

    При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются электролитической диссоцийции, т. е. в большей или меньшей степени распадаются на положительно и отрицательно заряженные ионы — катионы и анноиы. Электролиты, диссоциирующие в растворах не полностью, называются слабыми электролитами. В их растворах устанавливается равновесие между недиссоциированными молекулами и продуктами их диссоциацни — ионами. Например, в водном растворе уксусной кислоты устанавливается равновесие [c.124]

    На основе электронного строения атомов указать, могут ли быть окислителями атомы натрия, катионы натрия, кистород в степени окисленности —2, иод в степени окисленности О, фторид-ионы, катионы водорода, нитрит-ионы, гидрид-ионы..  [c.166]

    Потеря атсмов электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов — к увеличемию. Поэтому радиус положительно заряженного иона (катиона) всегда меньше., а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего элек-тронейтрального атома. Так, радиус атома калия составляет 0,236 нм, а раднус иона К " — 0,133 нм радиусы атома хлора и иопа С - соотпетственно равны 0,099 и 0,181 им. При этом раднус нона тем сильной отличается от радиуса атома, чем больше заряд иона. Например, радиусы атома хрома и ионов Сг + и Сг + составляют, соответственно, 0,127, 0,083 и 0,064 нм. [c.100]

    Анодная поляризация металла, т. е. сдвиг потенциала металла в положительную сторону, когда > (Ул1е)обр и А1/ > О, повышает энергетический уровень катионов на поверхности металла и понижает его у катионов, находящихся в растворе на расстоянии бо от поверхности металла, как это представлено кривой 3 на рис. 138. Устанавливающийся при этом скачок потенциала, поляризуемого внешним током металла относительно растЕюра Уа, дает в плотной части двойного слоя скачок г]) 4= обр- совершаемая работа А при переходе 1 г-иона катионов металла в раствор будет равна [c.199]

    Ионная полимеризация, как и радикальная, — цепной процесс. Однако в отличие от радикальной растущая макромолекула при ионной полимеризации представляет собой (в процессе роста) не свободный радикал, а ион — катион или анион, В зависимости от этого различают катионную (карбониевую) и анионную (карбани-онную) полимеризацию. [c.394]

    В весовом анализе чаще всего используют образование труднорастворимых соединений при взаимодействии двух ионов катиона В и аниона А . Один из этих ионов является определяемым компонентом, а другой — осадителем. Однако оба компонента реакции могут вступать во взаимодействия другого рода, что приводит к изменению растворимости осадка. Для многих анионов, обра зующих осадки, наиболее характерной является способность связываться ионами водорода, причем образуются молекулы слабой кислоты. Это взаимодействие рассмотрено в 10. Для катионов, образующих осадки, наиболее характерно взаимодействие с различными комплексообразователями. В результате связывания катиона осадка в комплекс состояние равновесия между твердой фазой и раствором сдвигается в сторону растворения осадка. [c.43]

    Энергии гидратации, рассчитанные по модели Борна, весьма значительны и достаточны для разрушения кристаллической решетки при образовании растворов электролитов. Это наиболее важный качественный вывод из теории Борна, который показывает, что йсповной причиной образования и устойчивости растворов электролитов служит сольватация ионов. К этому выводу можно прийти также, не производя расчетов, а сопоставляя формулы (II.6) и (11.12). Если в этих формулах пренебречь 1/п и 1/е по сравнению с единицей, положить Z = Z2, А 2 и ri r l , то энергия сольватации одного иона окажется равной половине энергии кристаллической решетки. Иначе говоря, энергия сольватации двух ионов — катиона и аниона — как раз скомпенсирует энергию разрушения penieTKH кристалла. [c.27]

    Затем смолу снова промывает и забивает свежим растворон соллной кислоты, оставляет на сутки, после чего проводят проверку нл присутствие ионов Fe и продолжает промывку до отрицательной реакции нэ ионы Катионит отмывает оЬессоленлим конденсатом до нейтральней реакции по метилоранжу л загружаит в колонку нз оргстекла с Чо мм. h 300 иа. [c.40]

    Адсорбция электролитов редко имеет молекулярный характер (эквивалентная сорбция катионов и анионов) она, как правило, избирательна. Образующийся при такой адсорбции адсорбционный слой называют двойным электрическим слоем. Избирательно адсорбированные ионы (катионы или анионы) электрически заряжают поверхность вследствие электростатического притяжения к этому слою ионоа притягиваются ионы противоположного знака, образуя как бы второй электрический слой. В результате адсорбционный слой становится похолшм на заряженный конденсатор с двумя обкладками. [c.228]

    В общем случае при гидролизе соли, образованной слабым основанием и слабой кислотой, могут получаться нейтральный, кислый или щелочной растворы в зависимости от того, гидролиз кэкого солеобразующего иона (катиона или аниона) преобладает. [c.314]

    Для понимания природы ионной связи можно сравнить взаимодействие атомов в таких молекулах, как I 1 и Na . В молекуле I I атом С1 более электроотрицательный, чем атом I. Однако их отличне в электроотрицательностн не слишком велико. Поэтому в молекуле происходит лишь некоторое смещение валентных электронов от атома I к атому С1, и схематически связь (взаимодействие) между атомами может быть представлена условной формулой 1+ 0 . В случае большой разницы в электроотрицательностн атомов, как, например, в молекуле Na I, происходит полная передача электрона от атома Na к атому С1. Возникают устойчивые ионы катион Na" и анион СГ. Они сохраняют в основном свое электронное строение при приближении друг к другу и образовании молекулы. Так возникает ионная связь Na+СГ, обусловленная электростатическим притяжением двух противоположно заряженных частиц. [c.20]

    Граница неполной сольватации (ГНС) отвечает такой концентрации электролита, при которой один из ионов (катион) имеет ближ нее окружение из молекул растворителя, а другой (анион) eroi не имеет или имеет неполное ближнее окружение при отсу гствии молекул дальнего окружения. [c.242]


Смотреть страницы где упоминается термин Ионные катиона: [c.67]    [c.33]    [c.36]    [c.199]    [c.438]    [c.36]    [c.263]    [c.264]    [c.484]    [c.23]   
Основы химии карбанионов (1967) -- [ c.102 , c.103 , c.118 , c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты катиониты



© 2025 chem21.info Реклама на сайте