Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрический анализ воспроизводимость

    Химические реакции, используемые в фотометрическом анализе, несмотря на различие в их химизме, должны обязательно сопровождаться возникновением, изменением или ослаблением светопоглощения раствора. Как и каждая реакция, используемая в количественном анализе, цветная реакция должна протекать избирательно, быстро, полностью и воспроизводимо. Кроме того, окраска образующейся аналитической формы должна быть устойчивой во времени и к действию света, а поглощение раствора, несущее информацию о концентрации поглощающего вещества, должно подчиняться физическим законам, связывающим поглощение и концентрацию, конкретно — закону Бугера — Ламберта — Бера. [c.53]


    Если раствор аналитической формы не подчиняется закону Бугера — Ламберта — Бера, то это приводит к появлению систематических погрешностей при определении концентрации вещества в растворе по прямолинейному градуировочному графику. Следует отметить, что при устойчиво воспроизводимой нелинейности градуировочного графика также возможно получение достаточно точных результатов анализа. Однако подчинение раствора аналитической формы закону Бугера — Ламберта — Бера в общем случае все же остается основным условием его использования в фотометрическом анализе. [c.57]

    В общем случае при единичных определениях и при ориентировочно известном диапазоне определяемых содержаний целесообразно использовать метод добавок или метод сравнения при массовых анализах — метод градуировочного графика. При определении следовых количеств обычно применяют абсолютный фотометрический анализ, а для повышения чувствительности и селективности — экстракционно-фотометрический. При массовом содержании определяемых элементов примерно 1 — 10 % предпочтителен дифференциальный фотометрический анализ, обеспечивающий большую воспроизводимость результатов [см. уравнения (4.23), (4.24) и табл. 4.2]. В частности, экспресс ный дифференциальный фотометрический анализ ряда компонентов в технологии многотоннажных минеральных удобрений позволяет намного сократить и упростить анализ исходного сырья, технологических растворов, готовой продукции. [c.217]

    В спектрофотометрическом анализе поглощение аналитической формы измеряют при оптимальной длине волны при лучшей, чем в фотометрии, монохроматизации рабочего излучения. Для этой цели используют более совершенные приборы — спектрофотометры, которые дают возможность снизить предел обнаружения, улучшить воспроизводимость и иногда избирательность. Общие положения фотометрического анализа естественно справедливы и для спектрофотометрии. [c.77]

    Блюм И. А. Воспроизводимость и границы обнаружения фотометрического анализа. — Завод, лаб., 44 (1978) 660/666. [c.113]

    В качестве контрольной величины для проверки постоянства воспроизводимости используют размах дублирующих определений Я, = а — л" по величине и знаку с ожидаемым значением Д = 0. Знак Я, может при известных условиях дать представление о систематической ошибке (например, не постоянная во времени окраска при фотометрическом анализе) или даже о работе двух параллельно работающих лаборантов Правильность значения для временных рядов проверяют по анализам случайно расположенных контрольных проб известного состава х Для каждого из этих контрольных анализов х, вычисляют разности d, = х,—х и сравнивают отдельные значения ё, с ожидаемым значением = 0. Точно так же можно подвергнуть проверке на правильность доли возвратов на повторный анализ [уравнение (9 50)] при ожидаемом значении Ь = 1,000. В случае анализа следов дополнительно проверяют по измерениям проб холостого опыта постоянство предела обнаружения [c.218]


    Для достижения высокой воспроизводимости и правильности результатов фотометрического анализа важное значение имеют селективность выбранного реагента и условия проведения фотометрических определений. [c.288]

    В фотометрическом анализе различают два типа пофешностей инструментальные и аналитические (методические и химические). Обычно полагают, что воспроизводимость абсолютных методов фотометрического анализа характеризуется пределами 2-5%. Однако эти усредненные значения могут значительно колебаться в [c.290]

    Двухволновая спектрофотометрия является одним из методов повьппения селективности, а в ряде случаев и чувствительности фотометрического анализа [9, 13, 107-111]. Вопросы правильности и воспроизводимости двухволновой спектрофотометрии подробно рассмотрены в работах [108-109]. [c.318]

    Точность (согласие между результатами, полученными с помощью фотометрического анализа, и истинным количеством определяемого вещества) и воспроизводимость (воспроизводимость измерений, выражаемая, например, через стандартную ошибку) зависят как от типа применяемого прибора, так и от выбранной химической реакции. На получаемые результаты. оказывает влияние также состав анализируемого раствора [185, 186]. [c.366]

    Автор рассмотрел воспроизводимость и нижний предел определяемых содержаний методов фотометрического анализа с учетом большого числа факторов. Трактовка отличается от традиционной количественным учетом влияния флуктуаций оптического фона, разделением С на составляющие — аналитическую Сц (а> и инструментальную Сн (и) — и рассмотрением вклада каждой [c.69]

    Воспроизводимость дифференциального фотометрического анализа [c.85]

    Имеется несколько вариантов дифференциального фотометрического анализа, сущность, воспроизводимость и правильность которых обобщены в монографиях [122, 123]. Дальнейшее развитие метрологические вопросы дифференциального фотометрического анализа нашли в работах [109, 120, 124—131]. [c.85]

    Для достижения высокой воспроизводимости и правильности результатов фотометрического анализа важное значение имеют селективность выбранного реагента и условия проведения фотометрических определений. Некоторые общие рекомендации по основным химическим, оптическим и метрологическим данным, которые необходимы при разработке и выборе фотометрического метода анализа, его оптимизации и представлении материала для публикации, приведены в литературе [8—10, 148—154]. [c.95]

    Воспроизводимость дифференциального фотометрического анализа. .................................85 [c.428]

    В данной работе рассматриваются результаты большого объема исследований в области фотометрического анализа материалов особой чистоты с точки зрения воспроизводимости и точности. [c.164]

    Воспроизводимость фотометрических методов анализа [c.187]

    Нижеприведенные работы имеют целью проиллюстрировать применение различных вариантов абсолютных и дифференциальных фотометрических методов. В реальных ситуациях выбор конкретного метода определяется, естественно, совокупностью факторов и прежде всего природой анализируемого объекта, диапазоном определяемых содержаний интересующего элемента, массовостью анализов, требованием к воспроизводимости результатов. [c.217]

    Пламя как источник света для эмиссионного спектрального анализа, еще десять лет назад использовавшееся для определения лишь щелочных металлов, в настоящее время превратилось в один из наиболее эффективных источников при анализе растворов. Одним из существенных преимуществ метода фотометрии пламени является использование эталонных растворов, приготовление которых значительно проще, чем эталонов металлов, сплавов и порошков. Пламя дает также значительные преимущества по сравнению с электрическими источниками в воспроизводимости результатов определений, позволяя снизить случайную ошибку измерения абсолютной интенсивности спектральных линий до десятых долей процента при оптимальном выборе параметров, определяющих режим работы горелки и распылителя. Это позволяет вести количественный анализ по измерению абсолютной интенсивности линий методом пламенной фотометрии точнее, чем при использовании электрических источников света, даже если в последнем случае анализ ведут по относительной интенсивности линий с использованием внутреннего стандарта. Отрицательным свойством пламени, однако, является малая чувствительность определения трудновозбудимых элементов, связанная с относительной низкой температурой (3000—3500° С). Несмотря на это, возможно определение фосфора пламенно-фотометрическим методом с чувствительностью 5—10 мкг мл [206, 207, 337, 567, 643, 992, 1027, 1059, 1097, 1110]. [c.78]

    Относительный вклад перечисленных факторов в воспроизводимость фотометрических измерений определяется конкретными объектами, условиями анализа и типом спектрофотометра или фотоколориметра. [c.291]

    Основное внимание в литературе уделяется рассмотрению и анализу факторов 4-6 и взаимосвязи воспроизводимости фотометрических измерений со значением оптимальной оптической плотности А т- [c.291]


    При помощи нефелометрического и турбидиметрического методов анализа можно провести анализ при малых концентрациях компонентов, которые образуют труднорастворимые соединения (сульфаты, галогениды и др.). Для этого можно пользоваться водными и неводными растворами. Однако из формулы (П1,24) видно, что количество частиц и объем их не одинаково влияют на рассеивание света. Очень трудно добиться, чтобы в стандартном и в испытуемом растворах получались частицы одинакового размера. Кроме того, влияет форма поверхности частиц, что не учитывается выражением (П1, 24) в то же время известно, что мелкие кристаллы, например сульфата бария, могут принимать разнообразную форму. Таким образом, трудно получить воспроизводимые результаты. В настоящее время редко применяют нефелометрический анализ, так как разработаны более удобные и точные другие фотометрические методы. [c.94]

    Тот раствор, для которого значение /получается наибольшим, и используется в качестве раствора сравнения, так как в этом случае достигается наибольшая чувствительность и воспроизводимость определения. Однако следует иметь в виду, что в фотометрическом анализе увеличение концентрации раствора сравнения со не всегда приводит к повышению воспроизводимости определения, главным образом из-за возникающих отклонений от основного закона светопоглощения вследствие немо-нохроматичности поглощаемого света. Поэтому при выборе оптимальных условий дифференциальных измерений следует, прежде всего, найти ту предельную [c.328]

    Воспроизводимость устанавливаетея по Обычным правилам статистической обработки результатов. Для большинства простых случаев фотометрического анализа нет необходимости рассчитывать квадратичную ошибку [6, 7]. Вначале достаточно рассчитать средний результат и среднее отклонение от среднего результата. Для расчета среднего отклонения берут алгебраическую сумму всех отклонений (без знака — , так как всякое отклонение характеризует невоспроизводимость) и делят на число наблюдений. [c.226]

    В фотометрическом анализе различают два типа случайных погрешностей инструментальные и аналитические (методические и химические). Обычно полагают, что воспроизводимость абсолютных методов фотометрического анализа характеризуется пределами 2—5%. Однако эти усредненные значения могут значительно колебаться в обе стороны в зависимости от содержания определяемого компонента, выбора условий анализа и цветной реакции, характеристик спектрофотометра или фотоколориметра, области измеряемых опткческ11Х плотностей, кюветной невоспроиз-водимости и т.д. Ниже рассмотрены основные факторы, определяющие воспроизводимость фотометрического анализа. [c.76]

    Таким образом, полная погрешность абсолютной спектрофотометрии всегда выше, чем дифференциально , поэтому применение последней оправдано не только при определении высоких концентраций пробы, но и при использовании медленно образующихся, недостаточно прочных комплексов п в случае низкой воспроизводимости положения кювет при измерениях. При определении низких концентраций компонентов погрешность (№ 5), характеризующая флуктуации общего фона, нередко является определяющей. В этих случаях дифференциальный фотометрический анализ не имеет преимуществ перед абсолютньими спектрофотометрическими методами. [c.92]

    Двухволновая спектрофото.метрия является одним из методов повышения селективности, а в ряде случаев и чувствительности фотометрического анализа [244—249]. Интересные практические разработки на двухволновых спектрофотометрах типа Hita hi-356 в приложении к анализу неорганических веществ выполнены японскими исследователями [245, 248], а вопросы правильности и воспроизводимости двухволновой спектрофотометрии подробно рассмотрены в работах [246, 247]. [c.193]

    Тот раствор, для которого значение / получается наибольшим, и используется в качестве раствора сравнения, так как в этом случае достигается наибольшая чувствительность и воспроизводимость определения. Однако следует иметь в виду, что в фотометрическом анализе увеличение концентрации раствора сравнения Со не всегда приводит к повышению воспроизводимости определения, главным образом из-за возникающих отклонений от основного закона светопоглощения вследствие немонохроматич-ности поглощаемого света. Поэтому при выборе оптимальных условий дифференциальных измерений следует, прежде всего, найти ту предельную концентрацию раствора сравнения, при которой обеспечивается прохождение через поглощаемый раствор достаточного количества света и используемый прибор устанавливается на нуль . При работе на регистрирующих спектрофотометрах при дифференциальных измерениях перо должно перемещаться с обычной для прибора скоростью и значение максимума поглощения или оптической плотности не должно зависеть от усиления. В противном случае необходимо уменьшить либо толщину поглощающего слоя, либо концентрацию раствора сравнения. [c.202]

    Для определения Ка и К в сыворотке проба сначала смешивается со стандартным раствором и затем диализуется для удаления белка. После дополнительного разбавления водного диализата небольшое количество этого раствора деаэрируется и непрерывно закачи-вается в пламя. Часть воздуха и большая часть жидкого потока сбрасываются с помощью вертикального тройника. Оставшийся поток закачивается через капиллярные трубки в основное пламя со скоростью 1 мл/мин. Содержание Ка и К в сыворотке должно составлять 100 -160 и 2-8 мэкв/л соответственно. Для К градуировочная кривая является линейной во всем диапазоне, В случае Ка эта кривая также линейна, однако при высоких концентрациях на ней наблюдается неболь шой изгиб. Определение обоих элементов, проверяемое путем введения стандартных добавок в сывороточные пробы, по существу является полным. Установлено, что воспроизводимость ана-таза составляет 0,75 мэкв/л для Ка и 0,15 мэкв/л для К. Скорость автоматического фотометрического анализа достигает 40 проб/ч, тогда как в ручных измерениях она составляет около 10 проб/ч. [c.180]

    Воспроизводимость (см. гл. 2) фотометрических методов анализа обусловливается двумя типами случайных погрешно" стей — аналитическими (методическими и химическими) и инструментальными. [c.187]

    Воспроизводимость абсолютных фотометрических методов анализа, в которых оптическая плотность или пропускание) исследуемого или стандартного раствора измеряется относительно чистого растворителя или раствора холостогоъ опыта, обусловлена погрешностью измерения аналитического сигнала А, Т). [c.187]

    На примере анализа медного порошка показано, что при содержании ЗЬ 4-10 % ошибка < 7,5%. Стибин предложено также поглощать хлороформным раствором диэтилдитиокарбамината серебра, содержащим 1,10-фенантролин [1670]. Хотя этот метод несколько уступает по чувствительности экстракционно-фотометрическим методам с применением основных красителей, но уже в настоящее время превосходит их по воспроизводимости результатов. Замена цинка, используемого для получения ЗЬНд, борогидридом натрия позволит существенно снизить значение холостого опыта и тем самым повысить чувствительность метода. [c.58]

    Следует различать ионятия метод анализа и методика анализа . Метод анализа — это краткое определение иринцииов, положенных в основу анализа вещества, например титриметрический метод анализа или экстракционно-фотометрический метод анализа. Методика анализа — это подробное описание всех условий и операций, которые обеспечива от заданные характеристики иравильности и воспроизводимости. [c.22]

    Спектр возбуждают разрядом низковольтной искры от генератора ДГ-2 при токе 3,5 о и токе питания трансформатора 0,3 а. В качестве противоэлект-рода используют медный электрод, заточенный на усеченный конус. Аналитическая линия Р 604, 305 НЛ1. Для сравнения берут линию N 594, 167 нм. Лучшая воспроизводимость достигается при большом введении фотометрических клиньев,ширине щелиО,06 лл и искровом промежутке 0,5 Стабильное излучение начинается после 30-секундного горения искры и продолжается 1,5—2 мин. Продолжительность анализа фосфористой бронзы 4—6 мин. Квадратичная ошибка единичного определения 20%, что вынуждает производить несколько независимых отсчетов. [c.149]

    Фотометрические методы анализа применяют для определения элементов и органических соединений в шрфо-ком диапазоне относительных содержаний от 100 до 10" %. При выборе и описании методов и методик определения содержаний указанного интервала наиболее общий интерес представляют метрологические (правильность, сходимость, воспроизводимость, чувствительность, предел обнаружения, нижняя граница определяемых содержаний) и аналитические (селективность, экспрессность) характеристики, доступность агшаратуры и возможность автоматизации метода анализа (см. раздел 2). [c.268]

    Сходимость характеризует рассеяние результатов при фиксированных условиях вьшолнения эксперимента, воспроизводи-мосгь — при варьировании этих условий. В первом приближении можно считать, что стандартное отклонение сходимости в 1,4-1,5 раза меньше стандартного отклонения внутрилаборатор-ной воспроизводимости. Ввиду наличия такой простой связи между характеристиками сходимости и воспроизводимости в дальнейшем мы говорим о воспроизводимости фотометрических методов анализа. [c.290]

    Точность анализа можно оценить, по наклону кривой чем круче наклон кривой, тем чувствительней метод.. Дифференцированием можно показать, что при абсолютной фотометрической погрещности 1 % относительная погрешность анализа определяется величиной 230/5, где 5 — наклон-прямой, представляющий собой изменение пропускания в процентах (отсчет по ординате), соответствующее-десяти кратному изменению концентрации. Относительная ошибка при определении пропускания перманганатом при 526 ммк (кривая 1 на рис. 3.12) составляет на основании указанного отношения приблизительно 2,8% (при абсолютной ошибке фо-тометрнрования 1%). Если ошибка при отсчете на фотометре (воспроизводимость) равна 0,2% (обычное значение для современных приборов), то относительная ошибка в анализе будет около 0,6%. Аналогичный анализ, соответствующий кривой 4, будет гораздо менее точным. Точность анализа, отвечающая кривым 2 и 3, примерно такая же, как для кривой /, но область применяемых концентраций для них сдвигается в большую сторону. Детальное сравнение рис. 3.7 и 3.12 поможет выявить причину отмеченной закономерности.. [c.34]

    Квантометр МФС-3. Десятиканальный квантометр МФС-3 предназначен для экспрессного количественного анализа смазочных масел на продукты износа деталей двигателя он позволяет одновременно проводить анализ девяти элементов (десятый канал используется для линии сравнения). Полихроматор с вогнутой дифракционной решеткой построен по схеме Пашена—Рунге. Рабочий диапазон прибора 2000—4500 A используется решетка 1200 штрихЫм с радиусом кривизны 1000 мм, работающая в первом порядке относительное отверстие прибора 1 20 дисперсия 8,3 kl мм выходные щели шириной 0,075, 0,1, 0,15 мм. Фотометрическая воспроизводимость прибора 3%. Приемниками служат фотоумножители ФЭУ-39А. Прибор состоит из трех блоков, общим весом 655 кг. [c.300]

    И. Вавилова и его школы. Трудами этих ученых было вскрыто существо люминесценции, дана классификация разновидностей явления. Сотрудница С. И. Вавилова М. А. Константинова-Шлезингер посвятила свою научную деятельность люминесцентному анализу. Она разработала люминесцентные методы определения кислорода и озона, продемонстрировав очень низкий предел обнаружения и достаточно хорошую воспроизводимость определений. Ею была написана монография Люмипесцептпый анализ (1948). В настоящее время метод нашел очень широкое применение. Его главное достоинство — низкий предел обнаружения он успешно конкурирует Б этом отношении с такими методами, как фотометрический или полярографический. [c.62]


Смотреть страницы где упоминается термин Фотометрический анализ воспроизводимость: [c.35]    [c.291]    [c.85]    [c.353]    [c.289]   
Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Воспроизводимость

Воспроизводимость анализа

Воспроизводимость дифференциального фотометрического анализа

Воспроизводимость фотометрических методов анализа

Сопоставительная оценка воспроизводимости двух фотометрических методик анализа

Фотометрический анализ



© 2024 chem21.info Реклама на сайте