Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чувствительность и точность фотометрического анализа

    Главы 5—8 посвящены непосредственно физико-химическим основам фотометрического анализа — влиянию концентрации, pH, а также других практически важных факторов. Таким образом, в этих главах рассмотрены основные условия переведения определяемого компонента в окрашенное соединение. В следующих главах (9—II) рассмотрены аппаратура и общие условия измерения поглощения света — визуальные и фотометрические методы, а также вопросы чувствительности и точности фотометрического анализа. При этом авторы считали необходимым не ограничиваться только рассмотрением математической обработки результатов, но показать роль физико-химических факторов, а также больше внимания уделить вопросам правильности анализа. Попутно показаны принципы фотометрического определения больших количеств — этот вопрос целесообразно рассмотреть именно здесь, так как дифференциальная спектрофотометрия отличается от обычной фотометрии не принципом, а лишь приемами измерения оптической плотности. [c.12]


    ЧУВСТВИТЕЛЬНОСТЬ и точность ФОТОМЕТРИЧЕСКОГО АНАЛИЗА [c.219]

    В фотометрическом анализе рекомендуется производить измерения в спектральной области, для которой обеспечиваются наибольшая точность и чувствительность количественных определений. Если свет поглощает только раствор анализируемого окрашенного соединения, а все другие компоненты не поглощают в видимой области спектра, то оптическую плотность измеряют в максимуме светопоглощения исследуемого соединения ( акс)- Мольный коэффициент поглощения при наибольший. Это позволяет обеспечить наибольшую чувст- [c.470]

    По точности пробирный анализ приближается к химическим методам анализа [19, 393, 394, 8651. В последние годы его используют в сочетании с фотометрическими, спектральными и другими методами анализа, что значительно повышает селективность и чувствительность определения, позволяет брать меньшие навески. Многочисленные примеры такого сочетания приведены в настоящей монографии. [c.195]

    Органические растворители в фотометрическом анализе применяют для увеличения растворимости некоторых реагентов и окрашенных соединений, для повышения чувствительности и точности фотометрических определений, а также для концентрирования микроколичеств веш еств, подлежаш их количественному определению. Очень широкое распространение получили органические растворители для целей разделения анализируемых ионов и непосредственного фотометрического анализа в органической фазе. [c.267]

    Неводные растворители уменьшают степень диссоциации окращенных соединений и создают благоприятные условия для использования малопрочных соединений в фотометрическом анализе. Чувствительность и точность фотометрических определений в полярных растворителях, как правило, повышается по сравнению с водными растворами, где значительная часть определяемого иона остается не связанной в окрашенное соединение. Наиболее удобен для этой цели ацетон, который смешивается с водой в любых соотношениях. Диссоциация больщинства электролитов в ацетоне очень сильно уменьшается. Например, фотометрическое определение малоустойчивого синего роданидного комплекса кобальта обычно производят в среде 50 % ацетона, так как в водной среде это определение практически провести невозможно. Применение 90 % этилового спирта новы-шает устойчивость роданидного комплекса железа в 250 раз. Прибавление ацетона или этилового спирта оказывается полезным для определения и некоторых других металлов в виде роданидных комплексов. [c.268]


    Фотометрический анализ основан на переведении определяемого элемента в окрашенное соединение и измерении оптической плотности полученного раствора. Химическая стадия определяет возможности метода, время, затрачиваемое на анализ, специфичность, а также чувствительность и точность метода. Интенсивность поглощения можно измерять любым способом, независимо от характера окрашенного соединения. Точность метода, а частично чувствительность и специфичность зависят от способа измерения. [c.79]

    В области фотометрического анализа наблюдается е только увеличение числа описываемых методик, но и качественное изменение их характера. Еще 20—30 лет тому назад, как правило, был неизвестен даже состав окрашенных соединений, на образовании которых основывались методы. Сейчас положение резко изменилось. Без соответствующих теоретических положений в настоящее время трудно обоснованно выбрать метод, наиболее подходящий в конкретных условиях сочетания элементов, требований к скорости, точности и чувствительности. Поэтому одной из главных основ фотометрического анализа стала химия поглощающих свет комплексных соединений. В последнее время в редакционных статьях журналов по аналитической химии отмечается, что новые исследования по фотометрическому анализу должны содержать сведения о составе и прочности окрашенного соединения, о спектрах поглощения, о молярном коэффициенте светопоглощения, о влиянии pH на равновесие образования поглощающих свет соединений. [c.10]

    Таким образом, центральное место в фотометрическом анализе занимает химическая реакция. Время, затрачиваемое на анализ, чувствительность метода, его точность и избирательность зависят в основном от выбора химической реакции и оптимальных условий образования окрашенного соединения. Правильное из.мерение светопоглощения, разумеется, имеет большое значение. Однако выбор того или другого способа измерения поглощения света обусловлен, как правило, ке особенностями анализируемого материала или выбранной реакцией, а общими условиями работы той или другой лаборатории. [c.14]

    Органические растворители в фотометрическом анализе применяют для разделения ионов, повышения чувствительности и точности определения. [c.14]

    Сначала мы рассмотрим влияние разрядов различного рода на чувствительность спектрального определения — влияние, зависящее от физического характера источников света. На специальных примерах мы покажем, в какой сильной степени повышается чувствительность определения, если строго соблюдать условия возбуждения. Мы будем также указывать, насколько это позволит материал, и минимальные количества элементов, поддающихся определению. Затем мы рассмотрим вопрос о повышении количественной точности анализа фотометрическими средствами. Наконец мы приведем сравнение чувствительности спектрального анализа с чувствительностью обычного химического анализа и здесь особенно остановимся на разнице в постановке вопросов и задач этих двух дополняющих друг друга методов. [c.40]

    Прочность окрашенного соединения и его устойчивость в водных растворах увеличиваются с возрастанием констант устойчивости. Чем выше прочность окрашенного комплекса МК , тем полнее определяемый ион М связывается с фотометрическим реагентом Н в окрашенное соединение, тем выше могут быть точность и чувствительность фотометрического определения, меньше влияние посторонних ионов, присутствующих в растворе. Так, степень связывания Ре (П1) в роданидный комплекс заметно уменьшается в присутствии хлорид-ионов, а при наличии фосфорной кислоты происходит полное обесцвечивание раствора роданида железа. Между тем большие количества хлорид-ионов практически не влияют на определение Ре (П1) в виде более прочного салицилатного комплекса в значительно меньшей степени сказывается также присутствие фосфорной кислоты и фосфат-ионов. Поэтому реагенты для фотометрического анализа необходимо выбирать таким образом, чтобы окрашенное соединение определяемого иона было бы достаточно устойчивым и значительно более прочным, чем возможные соединения этого реагента с другими ионами, содержащимися в анализируемом растворе. При этом следует иметь в виду, что для количественной оценки образования окрашенного соединения определяемого иона термодинамические или концентрационные константы в. обычном виде можно использовать лишь при отсутствии побочных реакций. [c.15]

    Выбор длины волны света и светофильтра в фотометрическом анализе. В фотометрическом анализе для измерения светопоглощения выбирают такую спектральную область (или длину волны), в которой достигается наибольшая чувствительность и точность количественных определений. Выбранная для измерений длина волны света должна удовлетворять нескольким требованиям, из которых важнейшими являются следующие  [c.58]


    В монографии описаны классификация оптических методов анализа, общие характеристики реактивов, оптимальные условия анализа и аппаратура. Приведены методы расчета и физико-химическая характеристика чувствительности, точности и специфичности анализа. Рассмотрены физические основы фотометрического анализа даны оптические характеристики (спектры поглощения) окрашенных соединений, методы измерения оптической плотности, а также физико-химические свойства растворов окрашенных соединений. Описаны методы экстракции и маскирующие вещества. Большое внимание уделено методам отделения и получения аналитических концентратов. Приведены физические и химические методы анализа сложных систем. [c.384]

    Современное состояние фотометрического анализа олова характеризуется тем, что, с одной стороны, существует несколько апробированных известных методов, точность и чувствительность которых в общем не всегда удовлетворительны, а с другой стороны, в последнее время разработаны новые более эффективные методы, но они еще недостаточно апробированы на практике. [c.352]

    Основные узлы хроматографа соответствуют показанной на рис. 3.2 схеме. Разработано несколько типов устройств отбора проб как жидких (шприцы), так и газообразных (кран-дозатор, показанный на рис. 2.3). Любое из этих устройств может работать под управлением компьютера, при этом точность анализа увеличивается. Собственно разделение проводится в одной или нескольких хроматографических колонках, которые могут заполняться различными сорбентами. Длина колонки, температура, поток газа и свойства сорбентов — все это сильно влияет на эффективность разделения. Хроматограф может иметь одну или несколько колонок, расположенных параллельно или последовательно в зависимости от цели, которую нужно достичь. Элюируемые из колонки (колонок) компоненты обнаруживаются при помощи одного или нескольких детекторов. В хроматографии применяются следующие типы детекторов катарометры, пламенно-ионизационные, термоионные, электронного захвата, пламенно-фотометрические, атомно-адсорбционные, спектроскопические, электрохимические, радиометрические, фотоионизационные и т. д. Детекторы этих типов различаются по чувствительности, селективности и инерционности. В литературе [49, 50] описаны некоторые типы детекторов, обычно используемые в газовой хроматографии. [c.110]

    В настоящее время в химических лабораториях широко используются фотометрические (абсорбциометрические) методы анализа, позволяющие быстро определять как примеси, так и основные компоненты в различных объектах. Фотометрические методы отличаются простотой выполнения анализа, достаточной точностью и высокой чувствительностью. Эти методы применяются для определения большинства элементов периодической системы в широком интервале концентраций от 10 —10" %(1 10 —1-10 г/г) до 90— 100%. [c.3]

    Способ оценки спектров под спектропроектором часто удовлетворяет требованиям точности определения следов элементов. Это, несомненно, наиболее экономный способ быстрого и приближенного анализа большого числа проб. Вместе с точностью можно также увеличить чувствительность, если воспользоваться методами полуколичественного анализа (разд. 5.3). По сравнению с визуальным способом оценки спектров предел обнаружения можно снизить примерно в два раза путем фотометрирования спектров или измерения высоты пиков на зарегистрированных спектрах. Предел обнаружения можно снизить еще на одну пятую, если сравнивать между собой зарегистрированные спектры разных образцов [15]. Достоинство визуального рассмотрения записанных спектров видно из рис. 5.7 [5]. Величина предела обнаружения (б) данного метода, визуально едва различимая, легко идентифицируется при фотометрическом измерении записи. [c.34]

    Требуемая чувствительность используемого метода определяется целью анализа. Если речь идет об определении токсичного вещества, то минимальная концентрация, обнаруживаемая методом, доля на быть не выше одной десятой части от известного порогового значения токсичности этого вещества. При, такой постановке достаточна воспроизводимость, характеризуемая стандартным отклонением 5% от измеряемой величины, что легко достигается обычными титриметрическими, фотометрическими или полярографическими методами. Если о пороговой концентрации определяемого вещества имеются лишь очень неточные данные, не имеет смысла стремиться к высокой в процентном отношении воспроизводимости. Воспроизводимость, превышающая 1 % от измеряемой величины, едва ли необходима при анализе вод часто можно удовлетвориться методами определения, приводящими к результатам с относительным стандартным отклонением 10— 20%. В принципе, не следует стремиться к большей точности, чем это действительно необходимо, лучше сэкономить на времени и стоимости анализа. [c.32]

    Методы, основанные на восстановлении золота до элементного состояния [232, 404], селективны, но недостаточно чувствительны. Фотометрические методы [641, 1044, 1239, 1444] чувствительны, но малоизбирательны золото нужно отделять от сопутствующих элементов. Перспективны экстракционно-фотометрические методы [72, 342, 353, 1317] как высокочувствительные и селективные, однако они не всегда применимы. Так, методу [1317] не мешают лишь 50-кратные количества меди метод [353], не уступающий по точности пробирному анализу, предполагает трехкрат- [c.206]

    СПЕКТРО ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ — количественный анализ, основанный на переведении определяемого вещества действием реактива в поглощающее свет соединение, содержащееся в растворе, в измерении интенсивности поглощения света с помощью спектрофотометров один из фотометрических методов анализа. Спектрофотометры (ряс.) дают возможность выделять узкий диапазон длин волн, что отличает С. а. от фотометрического анализа, осуществляемого с помощью гл. обр. фильтровых фотометров, к-рые выделяют более широкий участок спектра. В связи с этим чувствительность и точность С. а. выше, чем фотометрического анализа (влияние иоглорон-пих ионов уменьшается). С. а. расширяет возможность определения мн. веществ, поглощающих свет в ультрафиолетовой, видимой и близкой инфракрасной областях спектра. Он позволяет измерять оптическую плотность на любом участке длин волн (в пределах рабочей области спектра спектрофотометра), вследствие чего с его помощью можно определять разные компоненты в смеси даже при наложении их спектров. Так, если в растворе содержится п веществ, характеризующихся полосами свето- [c.424]

    Тот раствор, для которого величина / получается наибольшей и используется в качестве раствора сравнения, так как при наибольшем значении / достигается наибольшая чувствительность и точность определения. Однако следует иметь в виду, что в фотометрическом анализе увеличение концентрации раствора сравнения С не всегда приводит к повышению точности определения, главным образом, из-за возникающих отклонений от основного закона светопоглощения вследствие немонохроматичности поглощаемого света. Поэтому при выборе оптимальных условий дифференциальных измерений следует, прежде всего, найти ту предельную концентрацию раствора сравнения, при которой обеспечивается прохождение через поглощаемый раствор достаточного количества света и используемый прибор устанавливается на нуль . При работе на регистрирующих спектрофотометрах при дифференциальных измерениях перо должно [c.123]

    Тот раствор, для которого величина / получается наибольшей и используется в качестве раствора сравнения, так как при наибольшем значении / достигается наибольшая чувствительность и точность определения. Однако следует иметь в виду, что в фотометрическом анализе увеличение концентрации раствора сравнения Сд не всегда приводит к повышению точности онределения, главным образом, из-за возникающих отклонений от основного закона светопоглощения вследствие немонохроматичности пог,лощаемого света. Поэтому при выборе оптимальных условий дифференциальных измерений следует, прежде всего, найти ту предельную концентрацию раствора сравнения, при которой обеспечивается прохождение через поглощаемый раствор достаточного количества света и используемый прибор устанавливается на нуль . При работе на регистрирующих спектрофотометрах нри дифференциальных измерениях перо должно перемещаться с обычной для прибора скоростью и величина максимума поглощения или оптической плотности не до,]1жна зависеть от усиления. В противном случае необходимо уменьшить либо толщину поглощающего слоя, либо концентрацию раствора сравнения. [c.106]

    Из данных рисунка видно, что между — 1дС т1п и lg(eiV) наблюдается корреляционная зависимость (коэффициент корреляции г=0,94), показывающая, что чувствительность анализа связана с природой реакции я фотометрическими характеристиками индикаторных веществ. Приведенная зависимость позволяет рассчитать усредненное минимально измеряемое значение с1А1(И, равное 0,004 мин , отвечающее точности фотометрических измерений на современных приборах, а также значение [c.41]

    Поглощение света веществом, как отмечалось, имеет избирательный характер. Коэффициент поглощения имеет различные значения при разных длинах волн. Зависимость е от длины волны Л (спектр поглощения вещества) выражается в простейшем случае почти симл1етричной кривой с максимумом. Для фотометрического анализа важна как величина максимума кривой емакс, так и ширина полосы. Обычно измеряют полуширину полосы, т. е. расстояние между длинами волн, при которых е — 0,5 емакс (рис. 1.23). Чем меньше полуширина полосы, тем легче и с большей точностью соединение может быть определено в смеси с другими окрашенными веществами. Величина емакс характеризует интенсивность окраски и, следовательно, чувствительность фотометрических измерений при соответствующей длине волны Ямакс. Таким образом, измерения желательно проводить при длинах волн падающего света, близких к Ямакс- [c.81]

    О-Диамины, при помощи которых фотометрическими методами можно определять селен (стр. 378), позволяют определять селен флуорометри-чески с еще большей чувствительностью. При этом 2,3-диаминонафталан [41, 477, 1233, 1595] в сильнокислых растворах приблизительно в 20 раз более чувствителен по сравнению с 3,3 -диаминобензидином [258, 566, 1593, 2315]. В этом случае чувствительность приблизительно соответствует чувствительности нейтронно-активационного анализа. Эти реагенты особенно удобны для определения селена в биологических образцах и позволяют определять с хорошей точностью до нескольких десятых микрограмма селена. [c.435]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    Оптимальные количества калия, определяемые этим способом,— 1 —10 мкг [[914], по другим данным — 5—50 мкг 1034,. 1591] Высокая чувствительность этого метода отмечается многими исследователями [196, 595, 2128] Погрешность определения около 6% [914], при очень малых количествах калия — около 10% [1824] Точность возрастает при измерении оптической плотности при 496 ммк [595, 1794]. Растворы подчиняются закону Ламберта — Бера. Фотометрическое определение калия в виде иодоплатината применяется при анализе цемента [1235], почвы [914, 1937], биологических объектов [1794] [c.94]

    Кинетику быстроидущих реакций удобно изучать фотометрическими методами. Оптическую плотность, по изменению которой судят о скорости реакции, измеряют иа фотоэлектроколориметрах ФЭК-М и ФЭК-Н. Применяя фотоумножители вместо обычных фотоэлементов, можно повысить чувствительность анализа. Успешное решение задач повышения точности и упрощения процесса измерений обеспечивается совместным использованием комбинации фотоэлектроколориметра с самопишущим прибором. Блок-схема такого устройства описана в монографии [304, с. 44—45]. [c.113]

    Точность анализа можно оценить, по наклону кривой чем круче наклон кривой, тем чувствительней метод.. Дифференцированием можно показать, что при абсолютной фотометрической погрещности 1 % относительная погрешность анализа определяется величиной 230/5, где 5 — наклон-прямой, представляющий собой изменение пропускания в процентах (отсчет по ординате), соответствующее-десяти кратному изменению концентрации. Относительная ошибка при определении пропускания перманганатом при 526 ммк (кривая 1 на рис. 3.12) составляет на основании указанного отношения приблизительно 2,8% (при абсолютной ошибке фо-тометрнрования 1%). Если ошибка при отсчете на фотометре (воспроизводимость) равна 0,2% (обычное значение для современных приборов), то относительная ошибка в анализе будет около 0,6%. Аналогичный анализ, соответствующий кривой 4, будет гораздо менее точным. Точность анализа, отвечающая кривым 2 и 3, примерно такая же, как для кривой /, но область применяемых концентраций для них сдвигается в большую сторону. Детальное сравнение рис. 3.7 и 3.12 поможет выявить причину отмеченной закономерности.. [c.34]

    Спектрофотометрический анализ, как и фотометрический, основан на законе светопоглощения Бугера — Ламберта — Бера (гл. XXV, 1), но объединяет главным образом м зтоды, основанные на измерении поглощения растворами монохроматических излучений. Преимущество использования монохроматических излучений состоит в том, что при этом повышается точность определений, измерение светопоглощения в узком участке спектра позволяет увеличить селективность и чувствительность прибора — спектрофотометра. [c.358]

    Глава о спектральном анализе составлена А. К. Бабко и О. П. Рябушко. Остальные разделы написаны коллективно тремя авторами. При этом разделы о классификации, чувствительности и точности методов, о хроматографии и о люминесцентном анализе составлены А. К- Бабко разделы об электроизмерительной аппаратуре и электрохимических методах написаны И. В. Пятницким, а фотометрические методы — А. Т. Пилипенко. [c.4]

    В работе [73] описан автоматический метод анализов органических кислот, предусматривающий использование колонок с силикагелем элюентом служили смеси хлороформа и грег-амило-вого спирта. Концентрация грег-амилового спирта в элюенте непрерывно увеличивалась в градиентном устройстве Уаг1 га(1, и смесь насосом подавалась в колонку. Индивидуальные разделенные кислоты, присутствующие в элюате, реагировали с индикатором (о-нитрофенол в абсолютном метаноле), который непрерывно подавался в поток элюата появляющееся при этом окрашивание регистрировалось проточным фотометрическим детектором при 350 нм. Этот метод был успешно применен для разделения ряда физиологически активных кислот, таких, как промежуточные соединения цикла Кребса. Чувствительность пр проведении серийных разделений этим методом примерно в 40 раз выше, чем при стандартном ручном методе, точность метода выше 3%. Кроме того, до введения образца не требуется предварительная депротеинизация и экстракция (с возможной потерей летучих веществ и получением случайных ошибочных результатов). [c.181]

    Эта методика обеспечивает точность и воспроизводимость результатов в пределах 1—1,5%. Обычно при определении кальция нужна более высокая точность, поэтому используют метод интерполяции, описанный в главе П1 (стр. 59). Раствор цемента (1%-ный) разбавляют в отношении 1 10 или 1 20 для получения концентрации кальция в растворе 200 мкг/мл, и добавляют 0,2— 0,5% лантана. Чтобы не производить дальнейшего разбавления, головку горелки поворачивают под углом 90° к световому лучу для уменьшения чувствительности. Затем определяют приблизительное содержание кальция в разбавленных растворах и приготовляют эталонные растворы с концентрацией кальция на 10% выше и ниже измеренной величины. Содержание лантана в исследуемых и эталонных растворах должно быть одинаковым. Используют пятикратное расширение шкалы и устанавливают нулевую линию таким образом, чтобы показания для двух эталонных растворов соответствовали концам фотометрической шкалы. Для каждого эталонного и исследуемого раствора усредняют не менее трех отдельных показаний. Содержание кальция в образце рассчитывают линейной экстраполяцией между результатами, полученными для двух эталонных растворов. Используя эту методику для определения кальция в цементе и шлаке, Спраг [351] получила результаты, совпадающие с данными химического анализа с точностью до 0,2%. Позднее эту же методику применили Кроу и др. [177], проводившие измереия на приборе модели 303 фирмы Perkin-Elmer с устройством D R-1. Согласие их результатов с данными химического анализа для различных образцов цемента было в каждом случае лучше 0,2%. [c.193]

    При непрерывном пропускании газа через раствор стабильность нулевого положения прибора хуже, чем при фотометрическом определеции следов углекислоты в газах она равна 0,5 делениям шкалы гальванометра. Это связано главным образом с циркуляцией раствора в реакционном сосуде. Но так как отдельные отклонения, вызванные приведенными факторами, компенсируют друг друга, нулевой ход прибора устанавливают определением средних значений отклонений с точностью до 0,1 деления. Необходимо определить углеводороды хотя бы тремя точками хроматографической записи анализа, причем нужно, чтобы разность изменения погашения раствора, отвечающая соответствующему углеводороду и выражаемая в делениях гальванометра, равнялась не менее чем трем делениям. Отклонение в максимальном элюционном объеме отличается от нулевого хода приблизительно на 1,5 деления. В соответствии с требуемой чувствительностью определения отдельных углеводородов можно подобрать такое количество адсорбента и такие изменения температуры хроматографической колонки, которые соответствуют условиям прохождения отдельных углеводородов в индикационной системе в небольших интервалах времени (для высших углеводородов интервал времени всегда более продолжителен, но общее количество образующейся углекислоты оказывается также повышенным и эквивалентно числу атомов углерода в молекуле). [c.325]

    Определяется колориметрическим методом с чувствительностью 0,001— 0,002 мг/л [0-23 0-21 12] и спектрометрическим [11]. По данным [2], определяется в воде водоемов фотометрическим, флуорометрическим, микролюми-несцентным, хроматографическим методами. По данным [0-13], чувствительность определения бериллия в водных растворах после обогащения проб составляет при спектральном анализе 10 % (с точностью 5%). После обогащения проб определяется физико-.химическими методами анализа [0-1]. [c.38]

    Применяются колориметрический, фосфорновольфраматный, перекисный 8-гидрОксихинолиновый методы более чувствителен и объективен фотоколоря-метрический метод [0-23]. В США для определения в питьевой воде и сточных водах применяется стандартный метод с галлиевой кислотой [0-69]. Полярографическим методом можно определить, ванадий в воде через 10 мин в концентрации 0,1 мг/л [0-21]. Определяется колориметрическим методом (чувствител >ность 1—-50 мг/л, точность 2%) [10] фотометрическими методами [0-1]. После осаждения фосфатами и гидроксидами железа и магния ванадий определяется спектральным анализом в концентрациях 0,005—0,045 мг/л, чувствительность определения методом атомно--абсорбционной спектрофотометрии по данным [0-24] —0,04 мг/л, по данным [0-18 0-62] — 0,06 мг/л. [c.43]

    Метод Кьельдаля относительно сложен, требует предварительного выделения белка из смеси, медленен, но при соблюдении всех предосторожностей — точен. Биуретовый метод — средней точности, быстр, может быть весьма полезным для сравнительных анализов. Безусловно, лучшим является широко используемый сейчас фотометрический метод Лоури. Интенсивность окраски, возникающей при одновременном протекании в нем биуретовой реакции и реакции Фолина, значительно большая, чем при применении одного лишь биуретового реактива. Установлено, что метод Лоури в 100 раз чувствительнее биуретовой реакции и в 10—20 раз — чем метод, основанный на измерении поглощения света при 280 ммк. [c.139]


Смотреть страницы где упоминается термин Чувствительность и точность фотометрического анализа: [c.262]    [c.225]    [c.265]   
Смотреть главы в:

Практическое руководство -> Чувствительность и точность фотометрического анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ чувствительности

Точность

Точность фотометрического анализ

Фотометрический анализ

Чувствительность и точность фотометрического анализа Чувствительность фотометрических методов

Чувствительность фотометрических



© 2025 chem21.info Реклама на сайте