Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория кристаллического поля, теория поля лигандов и теория молекулярных орбиталей

    СВЯЗИ следует принимать во внимание разные факторы. В случае ионных радиус донорного атома лиганда, его заряд, поляризуемость и постоянный дипольный момент. Для ковалентной связи важны энергия связывающей электронной пары, симметрия акцепторной или донорной я-орбитали и т. п. В настоящее время более или менее общепризнанными считаются четыре теории. Электростатическая теория в ее современной модификации — теории кристаллического поля теория валентных связей теория молекулярных орбиталей и, наконец, развивающаяся сейчас на основе сочетания теорий кристаллического поля и молекулярных орбиталей теория поля лигандов. Рассмотрим основные положения этой последней теории в самом общем аспекте. В первом ее варианте — теории кристаллического поля — считается, что лиганды создают электростатическое поле, под действием которого меняется энергия электронных орбиталей центрального иона. Так из пяти -орбиталей некоторые могут стать энергетически более выгодными (рис. 43), т. е. происходит расщепление и тем больще, чем сильнее действие поля лигандов. По своему действию лиганды располагаются в такой [c.97]


    Теория кристаллического поля, теория поля лигандов и теория молекулярных орбиталей [c.315]

    Естественно, что теория кристаллического поля, исходящая из ионной модели, требует видоизменения в тех случаях, когда в комплексе имеется заметная доля ковалентной связи. Когда эта доля сравнительно невелика, используется теория поля лигандов, в которой наличие ковалентной связи учитывается введением определенных поправок в расчеты, проводимые методами теории кристаллического поля. В случае значительной доли ковалентной связи применяется метод молекулярных орбиталей, используемый с учетом представлений теории кристаллического поля (такой подход иногда также называют теорией поля лигандов). [c.228]

    Двойное название рассматриваемого здесь метода исследования электронного строения координационных систем объясняется тем, что как обобщение теории кристаллического поля, учитывающее эффекты ковалентности, он получил самостоятельное название— теория поля лигандов [1—3]. С другой стороны, метод в целом не отличается от щироко известного и наиболее распространенного в квантовой химии и применяемого к любым многоатомным системам метода молекулярных орбиталей МО ЛКАО (хотя в конкретном применении к координационным системам и есть своя специфика). По этой причине в общем плане терминологии квантовой химии название Метод молекулярных орбиталей представляется более обоснованным. [c.110]

    Теория кристаллического поля не позволяет объяснить наблюдаемую последовательность силы лигандов, т.е. их способность к расщеплению энергетических уровней. Но если принять во внимание орбитали лигандов, причем не только те, на которых находятся электронные пары, обобществляемые с металлом, но и те, где находятся неподеленные электронные пары, непосредственно не связанные с металлом, удается в гораздо большей мере объяснить последовательность энергий расщепления. Такая расширенная теория молекулярных орбиталей содержит в качестве предельных случаев как теорию кристаллического поля, так и теорию валентных связей и обычно называется теорией поля лигандов. [c.233]

    Химическая связь в координационных комплексах. Электростатическая теория. Теория валентных связей. Гибридные и хр внешнеорбитальные комплексы. Теория кристаллического поля. Энергия расщепления кристаллическим полем. Низкоспиновые комплексы и высокоспиновые комплексы. Сильные и слабые лиганды. Теория молекулярных орбиталей. я-Взаимодействие между лигандами и металлом. Дативное л-взаимо-действие между металлом и лигандами. [c.204]


    Теория валентных связей правильно предсказывает наличие двух вариантов для числа неспаренных электронов, но не позволяет сделать выбор между ними. С точки зрения этой теории внутриорбитальные комплексы должны быть относительно инертными. Экспериментальные наблюдения, указывающие, что внешнеорбитальные комплексы обычно действительно более лабильны, чем внутриорбитальные комплексы, убеждают нас, что теория валентных связей представляет собой по меньшей мере шаг в правильном направлении. В свое время она явилась несомненным достижением, однако впоследствии была вытеснена теорией кристаллического поля и еще более совершенной теорией поля лигандов, или делокализованных молекулярных орбиталей. [c.228]

    История развития этих теорий служит иллюстрацией утверждения, что неверную теорию всегда можно усовершенствовать, но никогда нельзя доказать, что она окончательно правильна. Успешное объяснение теорией валентных связей координационной геометрии и магнитных свойств комплексов не дает гарантии правильности этой теории или хотя бы правильности ее подхода. Каков, например, правильный ответ на вопрос-обусловлено ли расщепление уровней 2д и образованием молекулярных орбиталей (точка зрения теории поля лигандов), электростатическим отталкиванием (теория кристаллического поля) или выбором шести орбиталей для гибридизации (теория валентных связей) А может быть, неверны все три точки зрения, и когда-нибудь мы будем относиться к теории поля лигандов с тем же снисхождением, с каким сейчас относимся к теории валентных связей  [c.246]

    В заключение отметим, что несмотря на успехи теории кристаллического поля, связанные, в основном, с учетом симметрии, особенно для соединений с ионной связью, она ограничена. Опыты по электронному парамагнитному резонансу показывают, что вопреки теории кристаллического поля электронная плотность не сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. связь в координационных соединениях не ионная, а ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбиталей как более общую, чем электростатическая теория ионной связи. [c.125]

    Теория кристаллического поля является весьма грубым приближением к действительности, так как рассматривает лиганды бес-структурно, как источники точечных отрицательных зарядов. Для более точных расчетов следует применять метод молекулярных орбиталей (МО), который в применении к комплексным соединениям называется теорией поля лигандов. В этой теории учитывается строение молекулярных орбиталей как адсорбированных атомов и молекул, так и атомов катализатора. Таким образом, становится возможным оценивать адсорбционную и каталитическую активность вещества и реакционную способность адсорбированных молекул в связи с их химическим строением. [c.459]

    Каковы принципиальные отличия теории кристаллического поля и теории поля лигандов Что общего в этих теориях Какие положения методов валентных связей и молекулярных орбиталей эти теории заимствовали  [c.70]

    Теория поля лигандов объединяет в той или иной мере идеи теории электростатического взаимодействия, метода валентных связей, теории кристаллического поля и метода молекулярных орбиталей. Теории поля лигандов и молекулярных орбиталей способны объяснить строение комплексов, энергию связи, магнитные свойства комплексных ионов, их окраску (спектральные свойства), а также иногда объяснить реакционную способность комплексных соединений. [c.210]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]


    Как видно из изложенного выше, теория кристаллического поля рассматривает электронные состояния только центрального атома, но не лигандов. Такую односторонность подхода пытается устранить, т. н. теория поля лигандов, для своих построений использующая метод молекулярных орбиталей (VI 3, доп. 11). В простейших случаях (для которых пока только и возможен количественный подход) это дает лучшее приближение, чем возможно с позиций теории кристаллического поля. Однако такое уточнение достигается ценой значительного усложнения трактовки. [c.465]

    Механизм образования комплексных соединений, прежде всего взаимодействие между комплексообразователем и лигандами, природа связи между ними, в современной химии описывается с помощью различных квантовомеханических методов — метода валентных связей, электростатических представлений (теории кристаллического поля), метода молекулярных орбиталей и теории поля лигандов. [c.167]

    Теория кристаллического поля базируется на электростатической модели и не учитывает других видов взаимодействий между лигандом и металлом, а именно ковалентность химической связи. Метод молекулярных орбиталей (ММО) дает основу для понимания ковалентности связи в комплексных соединениях. [c.530]

    Теория поля лигандов принимает во внимание взаимодействие орбиталей лигандов с орбиталями металла, по крайней мере в неявной форме. Для комплексов переходных металлов можно проводить и расчеты методом молекулярных орбиталей на разных уровнях приближений. Все эти более сложные расчеты предсказывают существование уровней, расщепленных таким же образом, как предсказывает теория кристаллического поля, и заселенных таким же числом электронов, какое могло бы поступить с d-уровня свободного атома металла. Детальное совпадение вычисленных свойств с экспериментальными может быть улучшено проведением более строгих расчетов, но важнейшие [c.315]

    Теорию валентных связей рассмотрим первой, поскольку она наиболее понятна и проста. В настоящее время ее применяют сравнительно редко, но она прекрасно служила больше четверти века химии координационных соединений для объяснения некоторых свойств комплексов. Затем обсудим электростатическую теорию с акцентом на теорию кристаллического поля. Хотя она возникла в 1929 г., особый интерес к ней проявился у химиков в течение десяти лет—с 1952 по 1962 г. Эта теория помогает объяснить многие физико-химические свойства координационных соединений. Большое число ограничений и приближений привели к необходимости учета в чисто электростатической теории эффекта ковалентного связывания. В результате появилась теория поля лигандов, которая будет рассмотрена после теории молекулярных орбиталей в применении к комплексам. Теория молекулярных орбиталей является наиболее общей, все остальные можно рассматривать как ее частные случаи. Однако из-за сложности применения ее к многоатомным системам в большинстве случаев с ее помощью нельзя получить точную трактовку строения того или иного комплекса. [c.399]

    Вначале Полинг преодолел эту трудность, предположив ионный характер связи в таких комплексах, т. е. он допустил, что орбитали металлов остаются свободными для размещения на них только электронов иона металла, а электроны, принимающие участие в связях, находятся на отдельных орбиталях, локализованных главным образом на лигандах. Далее он предположил, что внешние незаполненные орбитали могут быть использованы для формирования ковалентных связей, которые будут в резонансе с чисто ионными связями. Ниже будет показано, что теории кристаллического поля, поля лигандов и молекулярных орбиталей предлагают более удовлетворительную трактовку комплексов подобного вида. [c.404]

    Как уже было замечено, величина А для данного комплекса зависит от напряженности электростатического поля, обусловленного лигандами. Такими свойствами лигандов, которые влияют на величину А , являются размер, заряд, постоянный дипольный момент Х() и поляризуемость а. Последняя обусловливает возникновение индуцированного дипольного момента д, , поскольку к1 = Еа, где Е — напряженность поля, создаваемого центральным атомом. Полный дипольный момент равен р, = о + -1- Л . Конечно, сила о-связывания, а также возможная дополнительная сила л-связывания лигандов будут влиять на величину А,,, но эти факторы нельзя принимать в расчет в рамках теории кристаллического поля. Влияние этих факторов на параметр расщепления будет учтено в теории молекулярных орбиталей. [c.415]

    Теперь следует рассмотреть качественный аспект применения к комплексам теории молекулярных орбиталей, частным случаем которой является теория поля лигандов. Последняя более наглядна и сочетает удобство и простоту теории кристаллического поля со строгостью и общностью теории молекулярных орбиталей, что [c.423]

    ПОЛЯ ЛИГАНДОВ ТЕОРИЯ, квантовохим. теория электронного строения координац. соединений. Описывает взаимодействие дентр. атома (или группы атомов) и лигандов на основе представлений о мол. орбиталях в рамках молекулярных орбиталей методов. Как и в кристаллического поля теории, в П. л. т. принимается, что состояние электронов центр, атома определяется электростатич. полем, созданным лигандами, однако учитывается также изменение электронного распределения лигандов под воздействием центр, атома. Соотв. расширяются и задачи, решаемые методами П. л. т. помимо описания строения, реакц. способности, расчета спектральных и термодинамич. характеристик координац. соединений И изменений их св-в при замене центр, атома или лигандов, становится возможным теоретич. анализ таких ситуаций, когда взаимодействие центр, атома и лигандов настолько существенно, что может привести, напр., к образованию прочных хим. связей. Так, П. л. т. позволяет, в частности, описать смещения электронной плотности а- и я-электронных подсистем в группах СО карбонильных комплексов металлов. [c.65]

    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    ПЛОТНОСТИ я-орбитали находится между атомами С и N. а не в направлении к атому металла. Гораздо сильнее взаимодействует с уровнем 2д металла разрыхляющая я -орбиталь (рис. 20-16,6). Однако в этом случае эффект обратен тому, который наблюдался для лиганда С1 . Электроны на Сзд-орбиталях металла получают возможность частично делокализоваться и переместиться на я -орбиталь лиганда. Такая делокализагшя стабилизирует 2д-орбиталь, т. е. понижает ее энергию. В результате возрастает энергия расщепления, Д . Этот эффект представляет собой я-взаимодействие металла с лигандом, или М - Ь-я-взаимодействие нередко его пазы вают еще дативным я-взаимодействием. Лиганды, повышающие расщепле ние уровней указанным образом (СО, СЫ , N0 ), пользуясь терминоло гией теории кристаллического поля, называют лигандами сильного поля Одноатомные лиганды с несколькими неподеленными парами электронов как, например, галогенидные ионы, являются лигандами слабого поля, по тому что они играют роль доноров электронов. Связанные группы атомов наподобие СО скорее относятся к лигандам сильного поля, потому что их связывающие я-орбитали сконцентрированы между парами атомов и удалены от металла, тогда как пустые разрыхляющие молекулярные орбитали простираются ближе к металлу. [c.237]

    Сг(СбН )а - дибензолхром. Поскольку в таких комплексах содержатся неполярные лиганды, невозможно объяснить образование этих соединений как с шмощою простых электростатических представлений, так и на основании теории кристаллического поля. Связь в этих соединениях легко объяснима с помощью теории молекулярных орбиталей. [c.139]

    В настояш,ее время для теоретического объяснения природы связи в координационных соединениях общепризнанными явля ются три более или менее отличных друг от друга подхода. Хронологически и по увеличению сложности первым методом яв ляется электростатическая теория с ее более современной моди фикацией — теорией кристаллического поля, вторым — метод ва лентных связей и третьим — метод молекулярных орбиталей Более исчерпывающая теория, развивающаяся сейчас на основе сочетания теории кристаллического поля и теории молекулярных орбиталей, известна под названием теории поли лигандов. Конечно, следует учесть, что ни одна из этих теорий (за исключением последней) не предназначена для объяснения связи только в комплексных соединениях, но именно в этой области они применяются наиболее успешно. [c.247]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей теорию кристаллического поля и метод молекулярных орбиталей Метод валентных связей (ВС). Согласно этому методу (см гл. II), при образовании комплексов между комплексообразова телем и лигандами возникает ковалентная связь по донорно акцепторному механизму. Комплексообразователи имеют ва кантные орбитали, т. е. играют роль акцепторов. Как правило в образовании связей участвуют различные вакантные орбитали комплексообразователя, поэтому происходит их гибридизация (см. И.З). Лиганды имеют неподеленные пары электронов и играют роль доноров в донорно-акцепторном механизме образования ковалентной связи. Например, ион имеет электронную конфигурацию 3 " 45Чр  [c.293]

    Теория молекулярных орбиталей была с успехом применена ван-Флеком для дальнейшего развития принципов теории кристаллического поля при этом важнейшее достижение — учет расщепления уровней— удалось сохранить. Представления о кристаллическом поле имели тот недостаток, что электронные системы иона комплексообразователя и лигандов рассматривались до известной степени как автономные и вся схема взаимодействий в комплексе описывалась как взаимодействие точечных зарядов. [c.224]

    Сопоставлеиие теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи теории валентных связей и теории кристаллического поля (рис. 219), Шести электронным парам связывающих (Т-орбиталей октаэдрического комплекса в рамках теории валентных связей отвечает шесть сг-связей. Они возникают за счет донорно-акцепторного взаимодействия гибридных орбиталей комплексообразователя и электронных пар шести лигандов. Что же касается молекулярных 5Г - и т -орбиталей, то в теории кристаллического поля [c.560]

    Некоторые свойства ионных кристаллов — соединений металлов с частично заполненными З -оболочками —хорошо объясняются в. рамках теории поля лигандов, созданной на основе предложенной Бете и Ван-Флеком теории кристаллического поля для твердых тел. Согласно теории поля лигандов, химическая связь в кристаллах соединений металлов является чисто ионной, ионы рассматриваются как точечные заряды, а их электрическое поле (с несферической симметрией ) вызывает расщепление Зй-уровня иона металла. Теорик> поля лигандов можно использовать для объяснения строения как комплексных соединений, так и различных твердых веществ, и в общем виде с учетом связывающих орбиталей лигандов она ближе к теории молекулярных орбиталей, чем к теории кристаллического-поля. Для учета отклонений от простого кулоновского взаимодействия точечных зарядов вводятся параметры, включающие степень ковалентности связи, поляризационные искажения за счет соседних зарядов величину отклонения от сферической симметрии ионов с частично-заполненной -оболочкой. С помощью теории групп можно объяснить и предсказать расщепление атомных уровней, соответствующее тому или иному типу симметрии внутреннего электрического поля в кристалле. [c.47]

    Теория кристаллического поля, хотя она и пренебрегает орбиталями и электронами лигандов, и теория молекулярных орбита-лей, по-видимому, более пригодны для стереохимических предсказаний. Если сравнивать теорию кристаллического поля и теорию валентных связей, то первая более надежна для описания и предсказания стереохимии молекул. Кроме того, она прнводит к более глубокому пониманию важнейших факторов, обусловливающих стереохимические свойства комплексов переходных металлов. [c.438]


Смотреть страницы где упоминается термин Теория кристаллического поля, теория поля лигандов и теория молекулярных орбиталей: [c.401]    [c.110]    [c.92]    [c.125]    [c.64]    [c.280]    [c.397]    [c.460]   
Смотреть главы в:

Квантовая химия -> Теория кристаллического поля, теория поля лигандов и теория молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Кристаллического поля теори

Лигандов орбитали Орбитали

Молекулярное поле

Молекулярные орбитали орбитали

Орбиталь лигандов

Орбиталь молекулярная

Поляна теория

Теория кристаллического

Теория кристаллического поля

Теория молекулярных орбиталей

Теория поля лигандов



© 2025 chem21.info Реклама на сайте