Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазера свойства

    Лазер. Рубиновый и гелий-неоновые лазеры. Условия возбуждения и свойства лазерного излучения. Комбинационное рассеяние. [c.167]

    Отметим, что оксид алюминия при нагревании испаряется с разложением преимущественно на атомарные алюминий и кислород. Кроме того, в парах содержится небольшое количество молекул А10, АЬО, А Ог. Молекулы же АЬОз не обнаружены. Что толку, если учащийся научится составлять графическую формулу несуществующей молекулы оксида алюминия, но не сможет объяснить его тугоплавкость, химическую инертность, исключительную твердость, обнаруживать при наличии примесей свойства лазера. [c.81]


    Впервые предложен и реализован способ получения алмазных плёнок методом лазерного испарения УДА. Исследованы режимы испарения УДА в случае рубинового (Х=694 нм) и неодимового (Я=1060 нм) лазеров. Установлено, что испарение УДА происходит последовательностью лазерных импульсов длительностью -0.2 мкс, следующих с интервалом 1 мкс, интенсивностью излучения 2 МВт/см . В случае неодимового лазера наблюдалось испарение графита в условиях глубого вакуума и алмаза - на воздухе атмосферного давления. Был предложен метод уменьщения температуры испарения для сохранения алмазной фазы, основанный на введении в мишень тяжёлой органической жидкости. Впервые получены алмазные плёнки при испарении УДА неодимовым лазером. Исследованы их структура и свойства. [c.59]

    Для проведения строго направленных фотохимических реакций используют монохроматическое излучение (лазеры). Лазерное излучение обладает уникальными свойствами, которых нет у обычных источников света. Наиболее важным свойством лазерного излучения [c.124]

    Хорошо известно, что лазер как источник света характеризуется четырьмя замечательными свойствами. Лазерное излучение, во-первых, монохроматично, во-вторых, когерентно, в-третьих, обладает малой расходимостью и, в-четвертых, может быть сконцентрировано в очень коротком импульсе излучения, т. е. имеет высокую интенсивность. [c.5]

    В настоящее время лазеры широко используются в науке и промышленности. Они начинают решительно проникать и в повседневную жизнь, находя применение в сканерах чековых аппаратов супермаркетов, в воспроизведении с видео- и компакт-дисков. В связи с такими замечательными свойствами лазерного излучения, как монохроматичность, высокая интенсивность, короткая длительность импульса, применение их в фотохимических исследованиях в последнее время значительно возросло. Лазерные методы, используемые в экспериментальной фотохимии, обсуждаются в гл. 7. Само действие лазера основано на фотохимических процессах, обсуждаемых в этой и предыдущих главах. Поэтому стоит закончить данную главу кратким обзором некоторых важных классов лазеров на фотохимическом языке. [c.141]

    Важным свойством лазерного излучения является высокая монохроматичность, получающаяся вследствие многократного прохождения пучка света через резонатор лазера. В случае лазера с синхронизацией мод спектральная ширина может стремиться к предельному значению ширины, определяемому соотношением неопределенности (ср. со с. 51), вследствие конечной длительности импульса. Наибольшая монохроматичность излучения (порядка 1 к 10 ) обычно достигается у непрерывных лазеров. В некоторых лазерных средах может быть несколько переходов, как, например, в аргоновом ионном лазере, или действующий переход может давать широкую полосу флуоресценции, как в лазере на красителях. В этих случаях можно добиться селекции по длинам волн, заменяя пол- [c.183]


    Исследовательские работы с введением скандия в сплавы, чугуны и стали показали существенное улучшение их свойств, в частности, жаропрочности и твердости. Установлено, что скандий — хороший модификатор железа и алюминия [4]. Практическое применение в металлургии может получить и карбид скандия, резко повышающий твердость карбидов титана [51. Скандий рассматривается также как материал, который можно использовать в качестве добавок в квантовомеханических усилителях — лазерах. Проводятся работы по изысканию возможностей применения соединений скандия в полупроводниковой технике, радиотехнике, электронике и светотехнике (в качестве активаторов фосфоров), а также в стекольной промышленности для создания новых видов оптических стекол [61. Известны исследования о возможности применения скандия в ядерной технике для термоионных преобразователей, высокотемпературных нейтронных замедлителей, конструкционных материалов, специальных огнеупорных материалов и т. д. Возможно использование его в качестве активатора в портативных источниках жесткой радиации [7]. [c.15]

    Недавно еще могло показаться, что для химика вопросы химии гелия сравнительно маловажны. В последние годы, однако, химия гелия приобретает все большее значение даже с чисто практической точки зрения. В перспективе, когда техника ядерного горения протонов и дейтонов широко войдет в практику получения энергии, гелий будет накопляться в качестве отброса и, можно полагать, станет настолько легко доступным веществом. что как низкотемпературные возможности его применений (сверхпроводимость, криохимия), так и использование высокоэнергетических мета-стабильных его состояний, а также своеобразные свойства гелиевых катионов смогут иметь большое значение, например хотя бы в технике лазеров. [c.168]

    Однако в недавние годы для описания флуктуаций в разнообразных физических системах использовали точно такие или аналогичные им уравнения, хотя источник шума в них был внутренним и физических оснований для разделения уравнения на механическую часть и случайный член с известными свойствами не было. В качестве примеров можно привести электронные устройства , процессы релаксации , гидродинамику , диффузию , электромагнитное поле в веществе , уравнение Больцмана , лазеры (см. 11.9), динамику вблизи критической точки и гравитационное поле во Вселенной .  [c.229]

    Ниже приведены наиболее важные свойства лазеров. [c.168]

    Длина волны флуоресценции обычно зависит от размера хромофора, причем с увеличением размера хромофора длина волны возрастает, т. е. возникает более красное излучение. Свойства конкретного лазера на красителе определяются спектральными и молекулярными характеристика- ми используемого красителя. [c.173]

    Используют также термическую регенерацию поверхности электродов. После нагревания платиновых электродов до 600-1000 °С эти электроды восстанавливают свои свойства и становятся каталитически активными. Активирование стеклоуглерода осуществляют при температуре 3000 °С. Хорошие результаты достигнуты при активации поверхности стеклоуглеродных электродов с помощью лазера. При этом свойства электродов существенно улучшаются, что связывают с более тщательной очисткой их поверхности от загрязняющих веществ. [c.92]

    Наряду с обычными свойствами резист для глубокого УФ-света должен не только хорошо поглощать свет в области коротковолнового УФ-света (210—270 нм), но и не иметь поглощения в более длинноволновой области. Последнее избавляет от необходимости решать сложную задачу фильтрации актиничного длинноволнового света в спектре источника экспонирования. Одновременно для экспонирования в этой области разрабатываются специальные методы и источники света [4], применяются эксимерные лазеры [5]. Поскольку кванты света в коротковолновом УФ-свете несут примерно в 2 раза больше энергии, чем на грани видимой области спектра, то для сокращения энергозатрат и уменьшения нагревания слоев при экспонировании важно сильно повысить светочувствительность композиций по сравнению с обычными резистами. [c.177]

    Применение. Лантаноиды применяют как добавки к различным сплавам. Введение Се в сталь значительно улучшает ее свойства, так как Се связывает растворенную в стали серу и выводит ее в шлак. Из стали, содержащей 6% Се, изготовляют хирургические инструменты. Введение лантаноидов в магниевые сплавы повышает их прочность (из этих сплавов делают детали самолетов и ракет). Оксиды ЬпгОз, СеОз используют как катализаторы и промоторы для катализаторов. Лантаноиды входят в состав многих лазерных материалов, в частности широко применяют лазеры из стекла, содержащего N(1. Пропитка солями Ьп углей дуговых ламп для кг носъемок сильно увеличивает яркость света. [c.606]

    При исследовании некоторых органических жидкостей (дибу-тилфталат, бензотрон и т. п.) метод сдувания позволил установить различие в структуре граничных слоев и объемной жидкости. Переход от объемной жидкости к граничному слою иногда происходит скачкообразно, подобно фазовому переходу первого рода, нО при определенной толщине. В этом видна уникальность этого абсолютного метода исследования свойств граничных слоев, прецизионность которого значительно повысилась благодаря применению в эллипсометрии газового лазера [52]. [c.73]


    Теоретический анализ /25/ показывает, что распределение интев-сивности в спектре рассеянного света имеет сложный характер и зависит от кинетических свойств среды, в частности сяг наличкх в ней релаксационных процессов. Подробные исследования этих деталей спектральной картины рассеянного излучения потребовали разработки специальной методики, основным элементом которой является использование одночастотного лазера с предельно узкой линией собственного излучения. Необходимость в этом возникает в особенности при высоких температурах исследуемой жидкости (с ростом температуры компоненты триплета сближаются), при рассеянии под малыми углами и при изучении тонких деталей спектрал1 ой картины. Для этих исследований была создана специальная оптическая кювета, предназначенная для температур до 600° К под давлением до 50 МПа. Ра >-работанная система фотоэлектрической регистрации с синхронным детектированием обеспечивала высокую стабильность и чувствительность установки. [c.10]

    Разработанные к настоящему времени технологии получения высокочистых монокристаллов алмаза с заданными свойствами и алмазных пленок открывают новые перспективы их использования при изготовлении оптических окон для мощных лазеров и оптических приборов, теплоотводов, элементной базы для создания мощньпс транзисторов и различного рода датчиков, в частности, датчиков радиационного излучения. [c.4]

    Для технических и научных целей в настоящее время необходимы вещества особо высокой чистоты. Это промышленность полупроводников, атомная, производство люминофоров, некоторые жа(ропрочные и механически прочные материалы, производство материалов для квантовой энергетики (лазеры) и т. д. Достаточно указать, что в важнейшем полупроводниковом материале германии примеси меди и никеля не должны превышать 10- %. Это составляет один атом примеси на миллиард атомов германия или 1 мг на 1 т. С повышением чистоты физические и химические свойства веществ сильно меняются. Например, прочность на разрыв лучших сортов стали составляет 180 кг/мм . Прочность железных усов (тонких монокристаллических нитей из чистого железа) составляет 1200 кг/мм . До 1942 г. считали, что уран имеет температуру плавления, равную 1850 °С. После получения этого металла в чистом состоянии оказалось, что температура его плавления равна 1130°С. Эти примеры показывают практическое значение очистки веществ. Необходимо отметить, что глубокой очистке подвергают уже довольно чистые вещества. [c.65]

    Интересна попытка использования фторида скандия (ЗсРз) в квантовомеханических усилителях — лазерах. При добавлении его в искусственные рубины свойства последних значительно улучшаются. [c.70]

    Для проведения строго направленных фотохимических реакций используют монохроматическое излучение (лазеры). Лазерное излучение обладает уникальными свойствами, которых нет у обычных источников света. Наиболее важным свойством лазерного излучения с точки зрения применения его для фотохимического инициирования химических процессов является излучение мощных потоков световой энергии в узких спектральных интервалах. Используя излучение определенной длины волны, погло-щаемое реагентом, но не поглощаемое примесями, можно осуществлять только один вполне определенный процесс. Так, при лазерном облучении смеси СН3ОН, СОзОО (О — дейтерий) и Вг2 происходит бромирование только СН3ОН вследствие избирательного возбуждения молекул. Если данное вещество способно, например, к распаду и к изомеризации, то можно, используя лазерное излучение, осуществить направленно только один процесс. [c.120]

    Кристаллизация из газовой фазы дает возможность (подвергая, например, исходное твердое вещество сублимации с последующим осаждением) получать материал высокой степени чистоты, заданной структуры и с заданными свойствами. Метод кристаллизации из газовой фазы используют для получения тонкодисперсных порошков — пигментов и усиливающих наполнителей, в частности для получения оксидов (AI2O3, TiOa и др.) путем гидролиза газообразных хлоридов или путем их высокотемпературного окисления. Осаждение из газовой фазы применяют для покрытия подложек тугоплавкими соединениями или оксидными пленками либо для металлизации. Этот метод, заключающийся в эпитаксиальном росте кристаллов, т. е. в наращивании одного вещества на другое, базируется на сходстве строения срастающихся граней. Кристаллизацией из газовой фазы получают монокристаллы и монокристаллические пленки, в частности для лазеров и приборов микроэлектротехники. Возможно прямое осаждение из газов готовых твердых изделий, например, деталей полупроводников и других деталей сложной формы. Возможно также получение гранулятов физическим или химическим осаждением вещества из газа в кипящем слое. Свойства получаемых твердых фаз зависят от условий пересыщения газовой фазы, от температуры подложки и др. [c.262]

    В последние годы возрастающее применение находят и сложные соединения этих элементов. Если раньше они использовались ограниченно, теперь они находят применение для создания новых материалов с ценными свойствами. Так, твердые растворы ортованадатов иттрия и европия Еиз д.У04, обладающие люминофорными свойствами, применяют при изготовлении цветных кинескопов. Ванадаты оказались перспективными материалами и для лазерной техники. В частности, ванадат кальция, активированный неодимом, и соответствующие производные ниобия и тантала уже применяют в качестве активных элементов твердотельных лазеров. [c.311]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]

    Лазеры могут также использоваться для возбуждения в исследованиях комбинационного рассеяния света. Лазерная спектроскопия комбинационного рассеяния (КР) нашла ряд приложений в исследовании промежуточных продуктов фотохимических реакций. Высокая интенсивность и монохроматичность лазерного излучения обеспечивает методу КР чувствительность, которая недоступна с традиционными световыми источниками. Кроме того, появляется возможность изучения промежуточных соединений с временным разрешением. С перестраиваемыми лазерами становится возможной резонансная лазерная спектроскопия (РЛС). Когда длина волны излучения, возбуждающего комбинационное рассеяние, подходит к сильной полосе поглощения исследуемого образца, интенсивность КР увеличивается на шесть порядков по сравнению с обычным, нерезонансным возбуждением. Одним особенно важным вариантом лазерной спектроскопии КР является когерентная антистоксова спектроскопия комбинационного рассеяния (КАСКР), которая зависит от нелинейных свойств системы в присутствии интенсивного излучения и включает смешение нескольких волн. Высокая чувствительность получается вследствие того, что регистрация проводится скорее по люминесцентной, чем по абсорбционной методике. Паразитное рассеяние возбуждающего света ограничивает чувствительность традиционных исследований КР, но в экспериментах по КАСКР вблизи длины волны испускаемого излучения нет возбуждающего излучения, поэтому рассеянное возбуждающее лазерное излучение может быть отфильтровано. [c.197]

    В конце 1970-х годов появился метод фотодинамической терапии (ФДТ) раковых опухолей. В его основе заложено свойство раковой клетки концентрировать некоторые красители-сенсибилизаторы, которые при кратковременном облучении низкоэнергетическим лазером переходят в возбужденное состояние и реагируют с клеточными субстратами (например, холестерином, ненасыщенными липидами, гетероароматическими аминокислотами), образуя из них свободные радикалы. Их последующее окисление кислородом в опухолевых тканях (чере5 образование пероксидных радикалов, гидропероксидов и их расщепление до токсических производных) приводит к гибели раковой клетки без затрагивания здоровых клеток организма. [c.100]

    Продолжают открывать новые, причем, как правило, неожиданные свойства фуллеренов. Большой интерес вызывает сообщение химиков из Манчестера. Они помешали бакиболы Сбо в поры цеолита, имеющего параллельные цилиндрические каналы, а затем освещали их синим светом аргонового лазера. Экспериментаторы ожидали, что на выходе будет слабое инфракрасное излучение - чистые кристаллы бакиболов интенсивно переизлучают именно в этом диапазоне. Но оказалось, что в цеолитах углеродные шары переизлучают в видимой части спекфа - свечение видно невооруженным глазом. А так как тепло не вьщеляется, то на эту часть спектра приходится основная часть излучения. Почему это происходит пока не ясно. Предполагают, что элекфоны, заключенные в область размером 1,25 нм [c.155]

    Оказалось, что в этом ряду можно поставить во взаимно-однозначное соответствие ряд углеродных кластеров С о, С28, С ), Сто, Ст так, что число фаней (О) в Сфуктуре нз бора равно числу вершин (V) в фуллерене, а число фаней в фуллерене равно числу вершин в бораие. Из формулы Эйлера следует, что количество ребер (К) у каждой пары полиэдров одинаково. Ученые считают, что бороводородные аналоги бакиболов тоже будут обладать полезными свойствами и следует попытаться их синтезировать, испаряя лазером соединения бора с металлами в присутствии водорода. [c.167]

    Аналитические применения лазеров основаны по крайней мере на одном из следующих свойств монохроматичность, когерентность, высокая плотность мощности (или поток). Примером использования монохроматичности служит резонансная ионизационная масс-спектрометрия (РИМС, см. разд. 8.5) и спектроскопия комбинационного рассеяния (см. разд. 9.2 и 10.5). Высокий поток используют для лазерной абляции (см. разд. 8.1 и 8.5). [c.688]

    Ванадаты элементов I—III групп используются для получения люминофоров с белым свечением и со свечением в любом диапазоне видимого света, для применения в ртутных лампах высокого и низкого давления, для цветных и обычных кинескопов. Описаны лазеры на основе орто-ванадатов V, Ьа, Оё, Ьи. В сельском хозяйстве растворимые соли мышьяковистованадиевой кислоты используют в качестве фунгисидов и инсектисидов. Текстильная промышленность применяет ванадаты в качестве протрав при крашении хлопчатобумажных тканей. В медицине применение ванадия основано на окислительных и антисептических свойствах его соединений. Соединения ванадия широко используются в стекольной и керамической промышленности благодаря их разнообразной окраске, а также в фотографии и кинематографии в качестве проявителей, сенсибилизаторов и красителей фильмов и отпечатков. [c.17]

    Автоматический капиллярный реометр МРТ постоянной скорости фирмы Монсанто предназначен для оценки качества, реологических свойств и технологичности резиновых смесей путем измерения значений вязкости и релаксации напряжения при различных скоростях сдвига и температурах. Реометр МРТ рекомендуется и для оценки шприцуемости резиновых смесей, которая характеризуется усадкой и разбуханием экструдированного потока при выходе из пшриц- машины, измеряемым с помощью лазера. [c.449]

    В настоящее время уровень развития теории химии твердых тел позволяет целенаправленно синтезировать новые материалы, а также прогнозировать их физико-химические свойства. Например, важнейшая часть рубинового лазера — кристалл рубина, который преобразует полихроматическое излучение в монохроматическое— когерентный луч. Химический состав и структура рубина соответствуют -корунду. Характерной окраске и специфическим свойствам такой кристалл обязан примесным ионам Сг + (примесь 0,05% СгзОз), которые замещают часть ионов АР+. Облучение инициирует колебание ионов Сг +, которые генерируют вторичное уже когерентное излучение. Остальная масса кристалла играет пассивную роль — является проводящей прозрачной средой. Поэтому при создании ла.черов материаловедческая задача выглядела так рабочий кристалл должен быть прозрачен для света и [c.49]

    Быстрое развитие голографии в начале 60-х гг., тесно связанное с применением лазеров, привело к идее создания голографических запоминающих устройств. До сих пор еще не найден идеальный оптический регистрирующий материал, который удовлетворял бы всем техническим требованиям, таким, как чувствительность, быстродействие, сохранение информации и др. Пока приоритет сохраняется за несколько необычным классом материалов так называемых электрооптических кристаллов. Здесь особо следует выделить нецентросимметричные кристаллы, обладающие сег-нетоэлектрическими свойствами, например ниобат лития ЫЫЬОз. Голографическую запись первоначально осуществляли на чистых кристаллах ниобата лития. Однако такой материал обладает очень низкой чувствительностью к записи. Качество записи удалось резко повысить при легировании кристаллов ниобата лития ионами переходных элементов, например ионами железа. Голограммы, записанные на монокристаллах сегнетоэлектриков, обладают различной стабильностью — от нескольких секунд, например материал на основе Ва2ЫаЫЬ5015, до многих недель (иМЬОз, легированный ионами железа). [c.159]

    Среди материалов, обладающих электрическими свойствами, обычно рассматр йвают проводники, полупроводники и диэлектрики. Различия между ними определяются характером химической связи и структурой энергетических зон, возникающих в результате взаимодействия атомов или ионов, составляющих кристаллическую решетку. Энергетическая диаграмма полупроводникового кристалла в отличие от диэлектрика характеризуется более узкой полосой запрещенных энергий. Некоторые важнейшие полупроводниковые материалы для электронной техники уже были рассмотрены (германий, кремний, арсенид галлия). В то же время существует много перспективных соединений типа А В (А —Оа, 1п В -8Ь, Аз, Р) и А В1 (А11-2п, Сс1, Hg В -5, 8е, Те). Первые из них обладают исключительно высокой подвижностью носителей заряда, а вторые позволяют в широком интервале изменять ширину запрещенной зоны. Среди диэлектриков со специальными свойствами в первую очередь следует выделить сегнето- и пьезоэлектрические материалы для квантовой электроники, включая активные среды лазеров и мазеров. Первые из них склонны к поляризации только пол влиянием внешних механических воз- [c.164]

    Глаиа 17. Оптические свойства. Люминесценция и лазеры [c.331]


Смотреть страницы где упоминается термин Лазера свойства: [c.9]    [c.164]    [c.76]    [c.77]    [c.191]    [c.194]    [c.179]    [c.172]    [c.177]    [c.382]    [c.116]    [c.75]    [c.572]    [c.177]   
Аналитическая лазерная спектроскопия (1982) -- [ c.13 , c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте