Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий химия

    К а-элементам относятся водород, гелий, щелочные и щелочноземельные элементы, а также бериллий и магний. Водород и гелий существенно отличаются по своим физическим и химическим свойствам друг от друга и от остальных з-элементов. Это связано с резким отличием электронного строения их атомов от электронного строения атомов остальных -элементов. Свойства водорода удобнее обсуждать при изучении химии р-элементов УПА-подгруппы, а гелия [c.379]


    Если твердое тело может поглощать влагу или находится во влажном состоянии, то, как правило, оно является пористым. Большинство пористых, особенно высокопористых тел, можно представить как более или менее жесткие пространственные структуры — сетки или каркасы. Их в коллоидной химии называют гелями. Это уголь, торф, древесина, картон, бумага, ткани, зерно, кожа, глина, почвы, грунты, слабообожженные керамические материалы и т. д. Пористые тела могут быть хрупкими или обладать эластическими свойствами. Их часто классифицируют по этим свойствам. Пористые материалы обладают значительной и разной адсорбционной способностью по отношению к влаге, которая придает им определенные свойства. На практике в качестве адсорбентов. предназначенных для извлечения, разделения и очистки веществ, применяют специально синтезируемые высокопористые тела. Эти тела кроме большой удельной поверхности должны обладать механической прочностью, избирательностью и рядом других специфических свойств. Наиболее широкое применение находят активные угли, силикагели, алюмогели, цеолиты. [c.129]

    Функция Гейтлера — Лондона для молекулы Н2. Работа Гейт-лера и Лондона (1927) была основополагающей в области применения квантовой механики к химии, т. е. в области теории строения молекул. Эти ученые впервые нашли приближенное решение уравнения Шредингера для молекулы Нг, подойдя к ней как к системе, состоящей из двух атомов водорода. Использованная ими приближенная функция для молекулы На строилась из атомных орбиталей 15 каждого атома водорода. В нулевом приближении она имела вид, аналогичный функции для атома гелия (см. 9)  [c.54]

    Первые попытки применения положений коллоидной химии для объяснения происхождения и свойств твердых топлив относятся к концу прошлого и началу текущего столетия. Винтер [1] в своей работе ссылается на ряд авторов прошлого столетия, предполагавших, что угли, образовавшиеся из растений, являются необратимыми коллоидами. В результате сложных процессов, происходящих с отмершей растительностью, образуется сначала гидрозоль, а затем гидрогель торфа. Бурый уголь является сложной системой, состоящей из многих веществ, и в то же время мицел-лярным гелем (рис. 73). Безводные частички сухого вещества, имеющие коллоидные размеры, можно назвать ядром, водную оболочку этого ядра — лиосферой. Вода лиосферы связана с ядром посредством лиосорбции. Лиосфера является носителем электрических двойных слоев. Из-за своеобразия расположения этих слоев коллоидные частички ведут себя как многовалентные ионы [2, с. 261]. [c.212]


    Способность веществ обратимо менять окраску при возникновении-исчезновении давления относится и к физике, и к химии, т. е. к физической химии. Вещества эти — студни, переходящие при увеличении давления в жидкую фазу и восстанавливающие студнеобразную структуру при снятии давления. Студни (гели) — обширный класс веществ самого разного состава, причем каждой структуре присуще свое критическое давление . Например, гель гидрата окиси железа имеет темный красно-коричневый цвет, а гель хлористого натрия сильно опалесцирует. Под давлением эти гели становятся 4шчт№ прозрачными. (Снятие нагрузки вызывает быстрое восстановление студнеобразных структур — снова появляется первоначальная окраска. Детали устройства индикатора давления, использующего этот эффект, даны в а. с. 823915. Для нас важно другое Указатель применения эффектов должен включать и чистую физику, и чистую химию, и физическую химию. Если учесть сочетания эффектов и приемов — фонд почти безграничный. Эффективно пользоваться им можно только при условии предварительного анализа задачи. Стоит отключить ориентировку на идеальность при решении задачи 9.7 — и выход на нужный эффект резко затруднится. [c.168]

    Относительная простота структуры атома водорода (Is ), конечно, не означает, что его химия наиболее проста. Наоборот, она во многом отличается от химии других элементов. Основная особенность водорода заключается в том, что в отличие от всех других элементов (кроме гелия) его валентный электрон непосредственно находится в сфере действия атомного ядра — у него нет промежуточного электронного слоя. Положительный ион водорода Н+ представляет собой элементарную частицу — протон. [c.287]

    Недавно еще могло показаться, что для химика вопросы химии гелия сравнительно маловажны. В последние годы, однако, химия гелия приобретает все большее значение даже с чисто практической точки зрения. В перспективе, когда техника ядерного горения протонов и дейтонов широко войдет в практику получения энергии, гелий будет накопляться в качестве отброса и, можно полагать, станет настолько легко доступным веществом. что как низкотемпературные возможности его применений (сверхпроводимость, криохимия), так и использование высокоэнергетических мета-стабильных его состояний, а также своеобразные свойства гелиевых катионов смогут иметь большое значение, например хотя бы в технике лазеров. [c.168]

    ГЕЛИО ХИМИЯ — ГЕМИЦЕЛЛЮЛОЗЫ [c.417]

    Возможность определения молекулярных весов полимеров обусловливает применимость гель-хроматографии для разделений в биохимических исследованиях [16], например при исследовании ферментов и гормональных препаратов, при выяснении структуры протеинов, в химии нуклеиновых кислот, при разделении вирусов и т. д. [c.351]

    Нечто подобное случилось и с автором данной книги. При изучении курса "Общей химии" в институте я был восхищен той гармонией в природе, которую иллюстрирует Периодическая система элементов Д. И. Менделеева. В то же время я обратил внимание на противоречия в табличном варианте представления этой сложной системы природы. Я задавал себе вопрос "Почему литий (Ы), который по порядковому номеру следует за гелием (Не), переносится в начало следующего ряда, а не размещается правее гелия Ведь это так очевидно Выходило, что он должен размещаться сразу в двух местах Но так не бывает", — думал я. [c.8]

    Кроме гелия, неона и аргона. Ахметов Н. С. Неорганическая химия.— М. Высшая школа, 1975. — Прим. перев. [c.470]

    Значение водорода в химии Космоса исключительно велико. Водород — наиболее распространенное вещество Вселенной. Солнце на 75% состоит из водорода, огромные количества молекулярного и атомного водорода рассеяны в космическом пространстве и сосредоточены в звездах. Уже одно это обстоятельство заставляет думать о роли простейших атомов в эволюции звезд. Открытие гелия и неизменное соседство этих двух элементов в космических телах (24% массы Солнца составляет гелий и 1% приходится на остальные элементы) казалось загадочным до тех пор, пока ядерные реакции не стали объектом тщательных исследований. Пред- [c.149]

    Наибольшее применение гель-хроматография имеет в биохимии, в синтетической органической химии и химии полимеров, в частности при определении молекулярных масс, [c.362]

    Предметом ядерной химии являются реакции, в которых происходит превращение элементов, т. е. изменение ядер их атомов. Самопроизвольный распад радиоактивных атомов, рассмотренный выше, представляет собой ядерную реакцию, в которой исходным является одно ядро. Известны и другие реакции, в которых с ядром реагируют протон р, дейтрон (ядро атома дейтерия Н) й, альфа-частица а, нейтрон п или фотон у (обычно гамма-лучи). Удалось вызвать атомные превращения и под действием очень быстрых электронов. Вместо а-частиц (ядер Не) иногда используют ядра более легкого изотопа гелия Не. В последнее время все шире применяют для бомбардировки атомных ядер ускоренные ядра более тяжелых элементов вплоть до неона. [c.581]


    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Переход атомов в возбужденное состояние требует значительной затраты энергии. Гелий и неон имеют самые высокие ионизационные потенциалы и низкие температуры кипения и плавления среди благородных газов. При изучении химии благородных газов, как установлено в результате экспериментальных исследований и теоретического обсуждения полученных фактов и данных, приме- [c.349]

    Большое влияние на величину индукционной поляризации оказывает степень удаленности внешнего электронного слоя от ядра и и экранирующее действие промежуточных электронных оболочек в атоме. При данной напряженности электрического поля здесь наблюдается такая закономерность с увеличением числа электронных слоев в хими [ески однотипных атомах деформируемость их сильно повышается — частица становится мягче . Например, в атоме гелия имеется один электронный слой, а ксенона — пять. Деформируемость же атома ксенона превышает деформируемость атома гелия в 20 раз. Накопление электронов во внешнем слое действует на деформируемость частицы в противоположном направлении — она от этого становится жестче . [c.96]

    Как следует из рассмотренных выше данных по используемым в России МУН, в основе большой части составов лежат различные дисперсные системы - гели, суспензии, осадки, мицеллярные растворы. Нефть также представляет собой дисперсную систему, и, соответственно, все процессы в нефтяном пласте следует рассматривать исходя из представлений коллоидной химии. В частности, большое значение имеют вопросы строения и устойчивости дисперсных систем, в частности суспензий, поскольку это - важнейшие факторы, определяющие эффективность. По Дерягину [52], следует различать несколько видов устойчивости  [c.39]

    Предлагаемое в третьей части сжатое описание строения простых жидкостей позволяет дать обзор особенностей, которые присущи структуре ие только простых, но в большинстве случаев и сложных жидких систем металлов, полупроводников, диэлектриков, низкомолекулярных жидкостей, полимеров, стеклоподобных фаз. Большинство хими-ческих процессов протекает в жидких средах, поэтому исследования структуры жидкостей полезны для многих разделов химии. Отметим, что XI глава книги посвящена простым квантовым жидкостям — изотопам гелия. Этот очень интересный и важный раздел теории жидких систем мало освещен в учебной литературе. Значение квантовых жид- [c.6]

    Сечение ионизации и возбуждения быстрым электроном очень слабо зависит от температуры газа. Поэтому главным кинетическим параметром, характеризующим скорость химического превращения всщества в радиациохг-ной химии, является величина G — числе превратившихся молекул па единицу поглощенной веществом энергии (обычно за Taityro единицу берется 100 эв). Эта величина носит название радиациошю-химического выхода. Выход ионизации для разных газов лежит в диапазоне от 2,39 у гелия до 4,46 у бутана [354] и слабо зависит от типа облучения [111]. [c.184]

    В 40—50-х годах было мало работ, углублявших сведения о загадочных двухатомных молекулах элемента, признанного химически наиболее инертным, и относились к ним до известной степени как к курьезу. За последнее десятилетие, однако, проблема химии гелия сильно продвинулась вперед как в экспериментальном, так и в теоретическом направлении. Это следует приветствовать, так как в перспективе следует еще многое понять в вопросах химической инертности и реакционной способности. [c.168]

    В настоящее время разработано значительное число методов изучения электрофореза и определения с его помощью электрокинетического потенциала метод непосредственного изучения движения границы между дисперсной системой и свободной дисперсионной средой под действием внешней разности потенциалов (метод подвижной границы), метод микроэлектрофореза — наблюдение с помощью микроскопа или ультрамикроскопа за перемещением отдельных частиц,, электрофорез в гелях, бумажный электрофорез и др. Эти методы,, подробно описанные в практикумах по коллоидной химии широко применяются для изучения электрофореза как дисперсных систем, образованных низкомолекулярными веществами, так и дисперсий ВМС, особенно природного происхождения. Методы электрофореза позволяют анализировать и разделять смеси белков, что эффективно используется в исследовательской работе и лечебно-диагностической практике. [c.194]

    Структурные формулы в основном возникли в органической химии и хорошо описывают органические молекулы. Для неорганических молекул штрих хуже передает многообразие атомного взаимодействия. В молекуле СО существует так называемая семиполярная связь. Атом кислорода передает электрон углероду, после чего электронные оболочки обоих атомов делаются подобными электронным оболочкам азота. Поэтому Л. Полинг описывает оксид углерода формулой С =0+. Связь в молекуле Не трактуется как трехэлектронная, возникающая в результате обмена места электрона иона гелия с электронной парой гелия. Высказывалось предположение, что подобная связь имеется и в Ог. [c.617]

    В результате только что рассмотренных открытий наиболее важных для химии простых структурных единиц атомных ядер стало уже четыре электрон, протон, нейтрон и позитрон. Из более сложных образований особое значение для химии имеют ядра гелия — гелионы (а-частицы) и ядра дейтерия — дейтроны (дейтоны). Эти частицы характеризуются следующими данными  [c.507]

    Исключительна роль водорода и в химическом отношении. Если атомы всех остальных элементов (кроме химически инертного гелия) под валентной оболочкой имеют электронный остов предыдущего благородного газа и размеры их положительных ионов не намного меньше размеров нейтральных атомов, то ион Н представляет собой просто протон, размеры которого примерно в 10 раз меньше размеров атома. Поэтому положительно поляризованный атом водорода обладает исключительно сильно выраженным поляризующим действием, что является одним из основных мотивов в химии этого элемента, С этим связаны такие особые свойства элемента, как образование водородных связей, "ониевых" соединений (оксоний, аммоний и т.п.), протолитические реакции, протонная (бренстедовская) концепция кислот и оснований и пр. [c.292]

    Дисперс1гую систему в этом случае можно представить в виде слабосшитого геля. В этом состоянии система легко поддается переводу в первоначальное свободно-дисперсное состояние, например, введением в нее определенных реагентов, взаимодействующих с дисперсионной средой. Этот процесс получения свободно-дисперсной системы из связанно-дисперсной называют пептизацией. Пептизация, то есть разрушение коагуляционного каркаса, происходит на уровне физических межмолекулярных, а не хими кч -ких сил взаимодействия между элементами дисперсной фазы и дисперсионной среды [c.23]

    Развитие хроматографии обеспечило возможность изучения влияния химии поверхности на межмолекулярные взаимодействия адсорбента главным образом с изолированными молекулами самых разнообразных веществ, адсорбирующихся из газовой фазы и жидких растворов в области малых заполнений поверхности, и, вместе с тем, потребовало создания возможно более однородных адсорбентов. В связи с этим теоретическая часть курса ограничена расчетами для однородных адсорбентов и в пособие не включены адсорбенты с сильно неоднородной поверхностью, не имеющие непосредственного применения в хроматографии. В нем не рассматриваются также теории ионообменной и ситовой (гель-фильтра-ционной) хроматографии, по которым имеются специальные руководства. Вместе с тем в пособии даются необходимые сведения о макропористых неионогенных и ионогенных адсорбентах и химических реакциях модифицирования их поверхности, которые облегчают читателю ознакомление с этими важными хроматографическими методами. [c.4]

    Подобные исследования легче проводить с так называемыми структурированными жидкостями — коллоидными растворами, переходными между золями и гелями, и растворами высокомолекулярных соединений. Такие системы изучались в отделе физико-химической механики дисперсных систем и материалов Института коллоидной химии и химии воды АН УССР. [c.179]

    Колоночная хроматография является макрометодом. Применение зто-го метода для проведения микро- и полумикроопределений связано с использованием чувствительных детекторов, имеющихся лишь для некоторых веществ, действие которых основано, например, на измерении радиоактивности. За последние два десятилетия колоночная хроматография потеряла прежнее значение. В области аналитической химии ее вытеснили такие методы, как бумажная и тонкослойная хроматография. Однако колоночную хроматографию можно применять в области препаративной химии. Эта тенденция развития не характерна для ионообменной и гель-хроматографии. [c.354]

    Из химии известно, что первый элемент этой таблицы — водород одновалентен, он легко отдает свой единственный электрон, станбвясь ионом Н+. Присутствие этого иона определяет свойства кислот. Ион водорода представляет собой просто ядро его атома и называется протоном. Водород весьма активно участвует в химических реакциях. Второй элемент — гелий является благородным газом. Он инертен и практически не вступает в химические реакции. Гелий содержит два электрона в своей внещней оболочке. Отметим, что невозможность существования третьего электрона в атоме гелия вытекает из запрета Паули. Оба его электрона имеют одинаковые квантовые числа п, I и /п и отличаются только спиновым квантовым числом. Если у одного из них 5= + 7г, то у другого 5=—72- Очевидно, что третий электрон мог бы иметь 5, равное или, + 12, или — /г, т. е. его квантовые числа полностью совпадали бы с квантовыми числами двух электронов, уже занявших свои места в атоме гелия. Отсюда можно сделать вывод о том, что внешняя оболочка, содержащая два спаренных электрона, особенно устойчива. Она не принимает и не отдает электронов. Поэтому в атоме третьего элемента периодической системы лития следующий электрон располагается уже в новой, т. е. второй электронной оболочке. [c.149]

    В УША-подгруппе размещены инертные элементы или благороД ные газы (сюда же включен гелий, хотя он является з-элементом), До 1962 г. полагали, что они не образуют химических соединений. Поэтому эта группа Менделеевым была названа нулевой. Ныне химия благородных газов быстро развивается (см. гл. X, 25). [c.51]

    Особо следует сказать о химии благородных газов. Их атомы содержат на внешнем уровне по 8 электронов (у гелия 2). Ранее считалось, что такие атомы не способны ни отдавать электроны, ни принимать их, ни образовывать общие электронные пары. Однако в 1962 г. было получено первое химическое соединение благородного газа —тетрафторид ксенона Хер4, после чего химия благородных газов начала развиваться быстрыми темпами. Особенно богата химия ксенона, соединения которого по свойствам сходны с соответствующими соединениями иода. [c.160]

    Важный вопрос об относительной химической инертности атомов и молекул встает сейчас перед наукой в глубоком теоретическом и практическом значении. В особенности это касается перспектив будущности химической промышленности, которая перенесет свой центр тяжести в заметной степени от современных методов термических воздействий на химические реакции к более тонким фотохимическим, электронно-ударным, магнв тохимическим и биокаталитическим процессам. В этом смысле ясным пред знаменованием сдвигов в химическом мышлении являются серии работ печатаемых за последние годы и освещающих химию эфемерных, метаста бильных частиц, в частности химию гелия, неона и его гомологов. В качест ве примера можно указать на исследования таких веществ, как N6 1 НеР" , ЫеСО , АгСО , а также исследования ионных молекул Нег  [c.167]

    В заключение этой главы, содержащей краткие указания на перспективное практическое значение химии гелия, понимаемого в свете его кайносимметрии, приводим как некий итог изображение (рис. 98), характеризующее первый период Системы для ее прототипических ls-кайносимм три-ков, водорода и гелия. [c.169]

    Рассмотрение электронных конфигураций атомов показало, что конфигурация пз пр соответствует неону, аргону, криптону и ксенону. Эти газы, а также гелий (конфигурация 15 ) называют благородными. В течение многих лет после их открытия считали, что благородные газы не способны принимать участие в химических реакциях они химически инертны (гл. 16). Химическую устойчивость благородных газов связывали с заполненной внешней оболочкой из 8 элек-V,, lii , тронов (или с заполненной /(-оболочкой из двух 1( Мг электронов в случае гелия). В 1916 г. Коссель и Льюис независимо друг от друга выдвинули теории, - i i I химической связи. Оба объясняли образование хими-iii11, I ческой СВЯЗИ стремленибм атомов отдать, получить 1ы, ч )Г , , . I или разделить с другими атомами электроны, чтобы II -и. приобрести устойчивую электронную конфигурацию [c.79]


Библиография для Гелий химия: [c.493]   
Смотреть страницы где упоминается термин Гелий химия: [c.276]    [c.668]    [c.97]    [c.381]    [c.443]    [c.29]    [c.235]    [c.72]    [c.8]    [c.35]    [c.688]   
Современная неорганическая химия Часть 3 (1969) -- [ c.2 , c.462 ]




ПОИСК







© 2025 chem21.info Реклама на сайте