Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция моделирование

    Равновесие гетерогенных процессов определяется константой равновесия химических реакций, законом распределения компонентов между фазами и правилом фаз. Равновесие между исходными реагентами и продуктами химической реакции, происходящей в одной из фаз, определяется константой равновесия Кр, Кс или Kw так же, как и для гомогенных процессов. При расчете и моделировании гетерогенных процессов степень приближения к равновесию характеризуется критерием равновесия Ра. Равновесные концентрации компонентов в соприкасающихся фазах определяются законом распределения вещества, который устанавливает постоянное соотношение между равновесными концентрациями вещества в двух фазах системы при определенной температуре. Постоянство соотношения не нарушается при изменении начальной концентрации компонента или общего давления в системе. На законе распределения основаны такие промышленные процессы, как абсорбция газов жидкостями, десорбция газов, экстрагирование и т. п. При моделировании процессов массопередачи подобие характеризуется критерием равновесности в следующем виде  [c.151]


    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]

    Моделирование процесса абсорбции аммиака водой из газообразной смеси [c.237]

    Таким образом, вопрос о моделировании абсорберов, т. е. о переносе данных, полученных при испытании моделей, на промышленные аппараты, еще окончательно не решен. Недостаточно изучены также процессы десорбции и абсорбции, сопровождаемой химической реакцией. [c.7]

    В книге рассмотрены важнейшие понятия химической кинетики. Изложены основы теории реакторов различных типов (периодического и непрерывного действия, колонных каскадов). Описаны реакторы с твердой фазой (неподвижным и псевдоожиженным слоем катализатора). Рассмотрены случаи протекания в аппаратах реакций, сопровождаемых абсорбцией и экстракцией. Приведены методы расчета реакторов с мешалками (аппараты идеального смешения) и трубчатых реакторов (аппараты идеального вытеснения). Даны сравнение реакторных установок и рекомендации по выбору реакторов. Во втором издании книги (первое издание вышло в 1968 г.) более подробно рассмотрены вопросы моделирования и оптимизации реакторов. [c.4]


    Математическое моделирование все более широко используется для исследования и проектирования различных процессов химической технологии. Анализ и моделирование таких сложных процессов, как разделение многокомпонентных смесей (методами ректификации, абсорбции, экстракции и др.), химические реакционные процессы, проведение которых в промышленных аппаратах осложнено гидродинамическими, диффузионными и тепловыми факторами, практически невозможны без применения современной электронно-вычислительной техники. [c.76]

    Пз изложенного видно, что в настоящее время нельзя еще рекомендовать общего надежного метода расчета абсорберов для хемосорбционных процессов на основе лабораторных данных. Такой расчет применим лишь в тех случаях, когда можно предполагать, что активная поверхность контакта при физической абсорбции и хемосорбции одинакова или если активная поверхность известна для обоих этих процессов. Мы полагаем, что для развития моделирования хемосорбции требуется прежде всего углубление познаний о величине активной поверхности контакта. [c.177]

    Три работы, о которых здесь идет речь, касаются управления системами ректификации и абсорбции. Наиболее полной из них является статья Льюиса . Он использовал моделирование на аналоговых машинах для доказательства устойчивости и расчета системы автоматического регулирования процесса регенерации растворителя, дающего большую экономию вспомогательных средств, необходимых для работы производства. [c.138]

    Переход к исследованию совмещенных процессов является следствием развития метода математического моделирования, способствовавшего пониманию сложных явлений. Совместное протекание нескольких процессов, например ректификации и химической реакции, абсорбции с химической реакцией не является чем-то исключительным в промышленных условиях и обычно известно. Но, как правило, один из них превалирует по скорости, интенсивности и прочим показателям над другим, как бы протекая на фоне другого. Если нежелательное влияние побочного процесса становится существенным, то принимаются меры по его подавлению, например, путем снижения температуры или добавлением стабилизаторов в случае химических реакций. [c.353]

    Такой подход особенно эффективен при моделировании физикохимических процессов в полидисперсных средах с массовым взаимодействием составляющих в области малых параметров (реакторные гетерофазные процессы, кристаллизация, экстракция, абсорбция, ректификация, многие биохимические процессы и т. п.). Заметим, что при моделировании процессов в области больших параметров (давлений, скоростей, температур) могут быть использованы методы статистических теорий механики суспензий [14—16]. [c.15]

    Тепло - и массообмен в ЦПА. Имеются подробные сведения [42—47] об исследовании в различных моделях ЦПА процессов теплопередачи, абсорбции и десорбции хорошо растворимых газов и пылеулавливания приведены соответствующие расчетные формулы, полученные с применением теории подобия, на основе разработанных ранее принципов моделирования пенных аппаратов [178, 232, 307]. [c.257]

    Данквертс и Кеннеди [31] предложили применять для моделирования кривые скорости нестационарной абсорбции Q в зависимости от 0 (стр. 105). Если для промышленного аппарата известны период обновления 0(, (или скорость обновления s) и удельная поверхность контакта а, а также скорость абсорбции стандартной системы N a (кмоль мг сек ), то скорость абсорбции конкретной системы в этом аппарате при тех же гидродинамических условиях может быть найдена по уравнению (принимая распределение по Хигби) [c.174]

    Среди многообразия процессов химической технологии значительное место занимают процессы массообмена. По существу почти любой химико-технологический процесс в той или иной степени сопровождается явлениями массопередачи. Однако имеется большая группа процессов, для которых массопередача является основным, фактором, определяющим их назначение. Примерами таких процессов служат ректификация, экстракция, абсорбция, десорбция и т. д., где массообмен происходит между различными фазами, в результате чего достигается обогащение одной фазы одним или несколькими компонентами. В настоящее время процессы массопередачи интенсивно исследуют методами математического моделирования (5, 10, 14], что позволяет использовать методы оптимизации для оптимальной организации этих процессов. [c.69]

    Числовое значение коэффициента массопередачи зависит от болт>того числа переменных величин, как-то от природы поглощаемого вещества и адсорбента и их физических свойств, от режима газового потока и его скорости и т. д. Коэффициент массопередачи находят опытным путем, обобщая опытные данные, на основе принципов теории подобия и моделирования. В данном случае, так же как и при абсорбции, теория подобия приводит к критериальному уравнению [c.530]


    В пособии рассматриваются современные представления о равновесии и диффузии в бинарных и многокомпонентных системах. Излагаются гидродинамические основы однофазных и двухфазных систем. Даны принципы математического моделирования процессов массопередачи. Впервые систематизируются математические модели и алгоритмы расчета процессов абсорбции, ректификации и экстракции. Описываются основные типы диффузионньгх аппаратов, приводится их расчет, моделирование и масштабирование. Дается сравнительная оценка различным конструкциям диффузионных аппаратов. [c.2]

    Иерархическая структура разработанной системы является трехуровневой задачей оптимального управлений блока. Она решена не только для реакторно-регенераторного блока, но и для блоков гидроочистки, абсорбции, стабилизации и газофракционирования. Для ее решения была использована кусочно-линейная модель применения алгоритмов экстремальной группировки, учитывая изменение химического состава сырья, а также активность катализатора. Был использован адаптивный идентификатор в цепи обратной связи, как на стадии моделирования, так и на стадии оптимизации. [c.21]

    При исследовании механизма абсорбции в любых газожидкостных системах наибольшую трудность вызывает расшифровка кинетики абсорбции, в частности достаточно адекватный учет диффузии вещества в газовой и жидкой фазах. Задача заключается в таком моделировании диффузионных процессов, протекающих как внутри фаз, так и на границе раздела, которое бы позволило достаточно полно отразить факторы, влияющие на массоотдачу. Известные модели переноса вещества (модели Уитмена — Льюиса, Хигби, Данквертса и др. [6, 28, 29]) не только труднореализуемы в связи со сложными решениями математических уравнений, но и не учитывают многие из этих факторов. На кинетику абсорбции влияют коэффициент диффузии, физические свойства газов и жидкостей, термодинамические параметры процесса, концентрация компонентов, направление массопередачи, вибрация и пульсация, эффект Марангони и т. д. Многочисленные исследования влияния этих [c.69]

    Описание структуры потоков фаз в аппарате и алгоритмы расчета стационарных режимов работы абсорберов. В большинстве случаев абсорбцию проводят в аппаратах колонного типа.Это насадочные, тарельчатые, пи-лочные и другие абсорберы. При моделировании абсорбции в таких аппаратах наибольшее распространение получили модель идеального вытеснения, ячеечная модель, диффузионная модель, диффузионная модель с застойными зонами. [c.286]

    Таким образом, анализ и обработка опытных данных по массопередаче в многокомпонентных смесях при ректификации и абсорбции показывает, что надежное моделирование многокомпонентной массопередачи достигается только при учете кинетического и термодинамического взаимодействия компонентов смеси с использованием обобщенных зависимостей по кинетике массопередачи в бинарных смесях. Кроме того, обобщение опытных данных по многокомпонентной массопередаче при ректификации и абсорбции [c.269]

    В монографии рассмотрены теоретические основы процессов взаимодействия между газами и жидкостями в интенсивных аппаратах, режимы работы, а также методы расчета и моделирования эффективных аппаратов. Проводится анализ влияния гидродинамических и масштабных параметров на показатели работы аппаратов, обобщены данные по коэффициентам скорости массо- (тепло-) передачи и к. п. д, в разных производственных процессах. Обобщены многочисленные работы авторов и других советских и иностранных ученых в области проведения абсорбции и десорбции, охлаждения и нагревания газов и т. п,, а также их обеспыливания и очистки от вредных загрязнений при промывке жидкостями в таких современных аппаратах колонного типа с турбулентным режимом работы как пенные аппараты различных типов, аппараты со взвешенной насадкой, аппараты с вертикальными решетками, полые колонны с распылением жидкости. [c.2]

    Возможно использование моделей, описанных в главе IV, в которых каждый элемент поверхности жидкости экспонируется газу до замены его жидкостью из основной массы в течение одинакового промежутка времени 0. В таких установках точно моделируется механизм абсорбции, постулируемый моделью Хигби. При этом, еслн коэффициент массоотдачи в жидкой фазе для газа с коэффициентом диффузии О А равен то продолжительность экспозиции в модели должна быть 40А1(пк1). Колонны с орошаемой стенкой, обеспечивающие продолжительность контакта порядка 0,5 сек, подходят для моделирования насадочных колонн, а ламинарные струи с контактом, равным нескольким тысячным секунды, — для моделирования барботажных тарелок. [c.176]

    JhaveryA. S.,SharmaM. М., hem. Eng. Sei., 24, 189 (1969). Абсорбция, сопровождаемая быстрой химической реакцией (в сосуде с мешалкой и в насадочной колонне — с целью лабораторного моделирования процесса в последней). [c.283]

    Книга предспшвляет собой монографию, в которой освещаются результаты важнейших работ в области теории и практика абсорбции с соотве/жтвуюи ими выводами и рекомендациями автора. В монографии изложены физико-химические основы и методы расчета типовых абсорбционных процессов (изотермическая и неизотермическая абсорбция, абсорбция летучими поглотителями, абсорбция из многокомпонентных смесей, хемосорбция, десорбция) описаны основные типы абсорберов (поверхностные, пленочные, посадочные, барботажные, распыливаюш,ие аппараты), приведены их сравнение и показатели работы, рассмотрены схемы абсорбционных установок и их регулирования затронуты вопросы моделирования абсорберов. Заключительный раздел монографии посвящен примерам конкретных расчетов абсорбции кратко описано применение электронно-счетной техники для анализа и расчета некоторых абсорбционных процессов. [c.2]

    При рассмотрении статики абсорбции даны сведения о равновесии некоторых конкретных систем. В главу Кинетика абсорбции включены краткий обзор различных моделей абсорбции и разделы, посвященные экспериментальному определению коэффициентов массопередачн и моделированию абсорберов. При расчете ступенчатых аппаратов автор отказался от применения понятия Теоретическая тарелка , как не отвечающего современному уровню знаний. Приведены расчеты абсорбции летучим поглотителем и абсорбции с выделением тепла по разработанному автором методу. Расчет десорбции рассмотрен на основе тепловой диаграммы равновесия. Кратко изложены вопросы применения электронно-счетных машин для расчета некоторых абсорбционных процессов. Введена глава, посвященная регулированию работы абсорбционных установок. При написании книги использована Международная система единиц (СИ). [c.8]

    При моделировании эта программа объединяется с другими программами, необходимыми для расчета процесса с учетом факторов абсорбции и отпарки. Блок-схема всей программы ABR показана на рис. Vni-25. Входная и выходная информация блока ABR представлена на рис. Vni-26. Отметим, что стандартная подпрограмма FSH здесь используется в нескольйо измененном виде, а именно величина отбираемой жидкой фазы RT принимает значение либо О, либо 1, и в программе осуществляется итерационный цикл счета для нахождения температур Ti и Т необходимых для расчета энтальпии уходящих потоков пара и жидкости и Ef. Входные величины для стандартной программы EDMTR также получают из подпрограммы FSH, внутри которой рассчитываются константы фазового равновесия, для чего используются подпрограммы HRI, ITR и общий материальный баланс системы. Программа ABR включается в модель расчета ректификационной установки, состоящей из кипятильника, колонны и дефлегматора, так, как показано на рис. УП1-28. [c.171]

    Следует отметить, что рассмотренная модель описывает не только процесс ректификации, но и абсорбцию, а также совмещенные процессы (например, абсорбционио - отпарные колонны). Особенности того или иного процесса будут проявляться только в процедуре расчета фазового равновесия -уравнение (1.7). Метод широко использовался при моделировании самых разнообразных процессов химической технологии при моделировании работы сложных колонн [14], нефтестабилизационных колонн [20], абсорбционно -отпарных колонн [17]. Более того метод легко модифицируется для расчета разделения неидеальных систем [21], для расчета разделения систем с двумя расслаивающимися жидкими фазами [22] и даже для моделирования динамических (нестационарных) режимов работы колонного оборудования [23]. [c.9]

    Работу по изучению фармакокинетики абергипа проводили в два этапа. На первом этапе изучали процесс абсорбции вещества в условиях опыта in vitro, используя аппарат моделирования процесса абсорбции фирмы Сарториус (Германия). На втором этапе проводили [c.222]

    Если предположить, что полная или частичная замена воды Ы-метилпирролидоном не существенно сказывается на механизме и скорости химических реакций, то при моделировании можно использовать кинетическую модель, изложенную выше (см. разд. 6.5). Основанием для такого предположения являются расчеты, выполненные И. Г. Завелевым (МИХМ). Он обработал опытные данные Ю. В. Аксельрода и А. И. Морозова по кинетике абсорбции СО2 водноорганическими растворами МЭА в пленочной колонне и нашел при умеренных степенях карбонизации значения г, весьма близкие к описываемым уравнениям (2.93). Соответственно, для построения локальной модели массопередачи рекомендуется при умеренных степенях карбонизации использовать уравнение (2.40), при высоких степенях карбонизации (а 0,5)—уравнение (6.17). [c.193]

    Таким образом, вопрос о степени влияния движущих сил массопередачи всех компонентов смеси на перенос массы каждого компонента продолжает оставаться еще мало изучсипым. В связи с этим далее рассматриваются результаты обработки экспериментальных данных по кинетике массопередачи при ректификации и абсорбции многокомпонентных смесей [48, 49], выполненной с целью опытной проверки линеаризованной теории массопередачи в условиях сложной гидродинамической обстановки на контактных устройствах, иными словами — с целью определения условий моделирования массопередачи в многокомпонентных смесях. [c.259]

    Моделирование массопередачи при абсорбции многокомпонентных газовых смёсей [c.268]


Библиография для Абсорбция моделирование: [c.271]   
Смотреть страницы где упоминается термин Абсорбция моделирование: [c.216]    [c.287]    [c.289]    [c.611]    [c.98]    [c.20]    [c.175]    [c.735]    [c.226]    [c.238]    [c.145]    [c.148]   
Общая химическая технология (1977) -- [ c.89 ]

Основы массопередачи Издание 3 (1979) -- [ c.365 ]




ПОИСК







© 2024 chem21.info Реклама на сайте