Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы угли также Активный

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]


    Ни двуокись кремния, ни окись алюминия сами по себе не являются эффективными в промотировании реакций каталитического крекинга. В действительности они (а также активированный уголь) промотируют термическое разложение углеводородов [249, 250]. Смесь безводных двуокиси кремния и окиси алюминия тоже не проявляет достаточной эффективности. Катализатор с высокой активностью получается только из гидроокисей с последующей частичной дегидратацией (кальцинированием). Остающееся малое количество воды необходимо для нормальной работы катализатора. Исследования, проведенные с применением окиси дейтерия, показали, что эта вода участвует в реакциях обмена водородом между катализатором и молекулами углеводородов, причем указанные реакции начинаются при температурах, значительно более низких, чем температуры крекинга [262, 265]. [c.340]

    Могут применяться хромоникелевый катализатор и активированный уголь последний — активный катализатор при температурах, превышающих температуры кипения азота [1, 6, 22, 24], а также катализатор, содержащий 30—35% СггОз на геле А Оз [96]. В качестве катализаторов испытаны окись никеля на глиноземе [97], сплав серебра с палладием [98], чистый рутений [99]. [c.64]

    Схема секции из двух ТЭ приведена на рис. 26,а. Катодами в ТЭ служат комбинированные никелево-уголь-ные электроды со слоем никеля, обращенным к раствору электролита и гидразина. Никель специально пассивируется для уменьшения потерь гидразина. Слой угля со стороны воздуха гидрофобен, между гидрофобным слоем угля и слоем никеля находится слой активного угля. Этот слой не имеет дополнительных катализаторов, что также снижает потери гидра- [c.135]

    Носителем может служить кристаллическая фаза катализатора, а также уголь, асбест, силикагель, алюмогель и т. д. При этом в случае металлических катализаторов природа носителя не оказывает большого влияния на активность катализатора. [c.111]

    Поэтому развитие данной области химии особенно актуально в связи с нефтяным кризисом на мировом рынке, а также вследствие резко возросшего интереса к таким источникам органического сырья, как уголь, природный газ, моноксид и диоксид углерода. Гомогенные металлокомплексные катализаторы отличаются высокой активностью в расчете на один атом металла и обладают существенной селективностью, а в ряде случаев и стереоселективностью. Эти достоинства металлокомплексного катализа обусловили то обстоятельство, что в настоящее время в промышленном масштабе осуществлено уже около 40 процессов, основанных на применении металлокомплексных катализаторов  [c.5]


    Реакция чис-/иране-изомеризации сопровождает реакции перемещения двойной связи и скелетной изомеризации алкенов. Катализаторами данной реакции могут быть активный уголь, окись алюминия, а также катализаторы, осуществляющие реакции перемещения двойной связи и структурной изомеризации олефинов. [c.68]

    На измельченный уголь наносят катализатор 0,2% Мо и 1,0% Ре(П1). Такое сочетание позволяет достичь степени конверсии органической массы угля до 83%. Максимальная активность катализатора обеспечивается при его нанесении из раствора на высушенный уголь. Эффективен также совместный вибропомол угля и солей катализатора, так как при этом происходит раскрытие микропор структуры органической массы угля и обеспечивается полное и равномерное нанесение катализатора на поверхность угля. [c.83]

    Известно, что циклогексаны легко ароматизируются над алюмохромовыми, алюмомолибденовыми и алюмоплатиновыми катализаторами. Однако в лабораторных условиях эти катализаторы не всегда обеспечивают достаточно высокие выходы, что связано с высокой изомеризующей активностью кислой окиси алюминия, которая способствует превращению циклогек-санов в циклопентаны. Активированный уголь, являясь инертным носителем, часто используется в качестве подложки для катализаторов, содержащих 5% или 5% Рс1.Реакции проводят при 200-300°С и атмосферном давлении. Никелевые катализаторы обладают способностью проводить разложение углеводородов до углерода и водорода, а также до метана и водорода, и поэтому они менее надежны в реакции дегидрогенизации. [c.78]

    Если необходимо снизить температуру реакции с 500-550°С (температура, характерная для термического процесса), то это можно сделать, применяя катализатор Активированный уголь проявляет некоторую активность, но обычно используют хлористый барий, нанесенный на уголь. Температура реакции зависит от природы подвергаемого дегидрохлорированию вещества, но начинать реакцию можно с 300°С, Можно также использовать хлорную ртуть, нанесенную на уголь. [c.345]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Из катализаторов на носителях следует упомянуть никель на кизельгуре [135], никель на пемзе [136], никель на кизельгуре с окисью тория [137], никель на окиси-магния, бария или бериллия (138], ппкелъ на окиси алюшщнн [139] и никель на смеси окислов цинка, бария и хрома [140]. Носителями никелевых катализаторов служат также активный уголь, кремневая кислота., отбеливающая земля, каолин, пемза, асбест, фуллерова земля, иди же окислы, например, окись магния, окись алюминия или боксит. [c.38]

    Как видно из табл. 2.3 и 2.4, плотности тока обмена восстановления Кислорода значительно ниже плотностей тока обмена ионизации водорода и предельных диффузионных плотностей тока кислорода. Поэтому выбор активного катализатора кислородного электрода для ТЭ исключительно важен. Катализ 1то-рами Кислородных электродов в щелочных растворах служат платина и палладий, их сплавы и серебро, а также активированный уголь. Каталитическую активность угля можно повысить введением оксидов некоторых металлов, например шпинелей №Со204,СоА1204,МпСо204 [10, с. 161 35, с. 131, 144, 145]. При температурах 200 С и выше активен литированный оксид никеля [7]. Катализаторами кислородного электрода в кислотных электролитах служат платина и ее сплавы и активированный уголь. Предложены также органические катализаторы - фтало-цианины и порфирины кобальта и железа, нанесенные на углеродистую основу [10, с. 161 11 47 66, с.60]. С помощью термообработки удалось значительно повысить их стабильность [11, 47]. Воздушные электроды, содержащие термически обработанные Органические комплексы, устойчиво работали при плотности тока 300 А/м свыше 3000 ч (9 10 А ч/м ) - [78, с. 157].,  [c.70]


    Подвижность катализатора и непрерывное изменение границы раздела катализатор — уголь во всех реакциях газификации вызывает трудности при интерпретации данных о газификации. Динамические свойства системы цолжны быть использованы при разработке модели процесса газификации, а также должны быть включены в рассмотрение усовершенствованных каталитических систем. Степень подвижности и равновесие между процессами диспергации и агломерации каталитических частиц в условиях газификации могут определять их активность. [c.251]

    Гетероциклические соединения с шестичленным циклом ведут себя аналогично. Пиперидин, а также пиперазин дегидрогенизуются легче, чем гидроароматические углеводороды, хотя пиперазин претерпевает частичное расщепление. В пр( цессе изучения описанных реакций были усовершенствованы методы приготовления соответствующих катализаторов и исследованы в качестве носителей асбест, силикагель и древесный активированный уголь. Особенно активными оказались платиновый и палладиевый катализаторы, осажденные на активированном угле. [c.16]

    Катализаторы, кроме кобальта и железа, содержат также металлы от V до VIII группы периодической системы Элементов — ванадий, молибден, вольфрам, ниобий, тантал, хром, марганец или их окиси свинец, олово, цинк, кадмий и твердые окиси неметаллов V группы (фосфор, мышьяк, сурьма) катализаторы обрабатывают водородом при 200°, а также сероводородом, селеноводоролом, сероуглеродом, ио-дистым водородом, например активный уголь пропитывают молибдатом аммония, азотнокислым свинцом и фосфорной кислотой и обрабатывают при 300° сероводородом или уголь пропитывают вольфраматом аммония, нитратом кобальта и пятиокисью сурьмы и обрабатывают сероводородом при 350° наконец, уголь можно пропитывать ванадатом аммония, азотнокислым кобальтом и фосфорной кислотой и нагревать при 350° с водородом и сероуглеродом в катализаторе может также содержаться окись урана [c.359]

    Окислеиие ацетальдегида изуча ти Hat her, Stea ie и Howland Они наблюдали, что главная реакция— цепного типа и что ацетальдегид, приходя в соприкосновение с воздухом, образует соединение, ведущее себя в воде, как органическая перекись " . Для окисления ацетальдегида было предложено большое число катализаторов, в числе которых мэ-рганец, железо, кобальт, хром и. медь а также активный уголь с нанесенной на него окисью цинка или фосфорной кислотой [c.940]

    Гидроконденсация окиси углерода с олефинами и их гидрополимеризация под действием малых количеств окиси углерода протекает в присутствии катализаторов, содержащих в качестве обязательного компонента кобальт [11]. Катализаторы на основе никеля и железа, имевшие высокую активность в синтезе углеводородов из СО и Нг, не вызывают гидроконденсацию олефинов с окисью углерода [12]. В их присутствии отмечалось лишь незначительное включение олефинов в растущие углеводородные цепи [13—15]. Из Со-катализаторов наиболее активным и стабильным оказался катализатор Со—глина (1 2), полученный осаждением поташом из раствора нитрата кобальта в присутствии носителя, прогретого при 450° С в атмосфере воздуха в течение 5 час. [16—21, а также кобальт, осажденный на гидрате окиси алюминия, промотированный гидроокисью или карбонатом щелочного или щелочноземельного металла [22]. Введение в катализатор Со—глина меди, МпОг, ВаО, NiO, VgOg в количестве до 20% снижает его активность SiOa, СггОз, активированный уголь и соединения бериллия и магния не оказывают влияния, а окислы цинка, кальция и алюминия обладают некоторым промотирующим действием. Однако совместным осаждением из растворов нитратов кобальта и магния получен катализатор Со—MgO, активность которого в реакции гидрополимеризации этилена не уступает катализатору Со—глина [23]. [c.37]

    Большинство перечисленных катализаторов инициируют также полимеризацинЗ пропилена, бутилена, бутадиена, изопрена, стирола, метилметакрилата и их сополимеризацию с этиленом. Активность катализаторов обычно возрастает при увеличении продолжительности их размалывания в отсутствие растворителя [833, 844]. В процессе дробления Т1С1г диспропорционирует на Т1С1з и Т [334]. Для получения более активных катализаторов исходные соединения активируют облучением [849, 850], в процессе дробления обрабатывают этиленом, водородом, хлором, хлористым водородом, галогеналкилами [833, 844, 849, 855]. Совершенные кристаллы перечисленных катализаторов несоизмеримо менее активны, чем микроагрегаты и молекулярные дисперсии. Реакции полимеризации в процессе дробления, вероятно, не являются специфическими, так как полимеризация протекает при дроблении не только переходных металлов или их соединений — окислов, галогенидов нитридов [842], но и таких веществ, как сажа, уголь, графит, бор, кремний [845]. Возможно, что винильные мономеры в процессе дробления указанных веществ полимеризуются по радикальному механизму. ..  [c.225]

    В табл. XIII, 1 приведены некоторые данные, полученные при изучении состава активных центров адсорбционных катализаторов методом теории активных ансамблей. В качестве катализаторов применялись платина, палладий, никель, железо, а также ряд других, например ионных, катализаторов. Катализаторы наносились на силикагель, алюмогель, активированный уголь применялась также окись магния, окись бария, окись кадмия, металлический кадмий и никель (на платине) и ряд других. Изученные каталитические процессы можно разделить на следующие окисление, восстановление кислородсодержащих групп, гидрирование ненасыщенных связей, разложение перекиси водорода, синтез аммиака. Во всех случаях была получена зависимость активности от концентрации катализатора на носителе, отвечающая теоретической и позволяющая определить состав активного центра. [c.340]

    Следует отметить, что без продукции химической промышленности нельзя осуществить природоохранные мероприятия ни в одной отрасли промышленности, ни в сельском, ни в коммунальном хозяйстве. Именно химическая про.мышленность производит такие материалы, как различные виды реагентов, коагулянтов, флокулян-тов, ионообменных смол, без которых невозможны ни очистка промышленных сточных вод, ни подготовка питьевой воды. Достаточно сказать, что отраслью ежегодно выпускается около 100 тыс. т жидкого хлора в мелкой таре, идущего на обеззараживание питьевой воды и очищенных сточных вод. Десятки тысяч тонн в год коагулянтов в виде хлоридов и сульфатов железа, сульфатов алюминия используются для очистки сточных вод. В больших количествах применяются как нейтрализующие агенты при обработке загрязненных сточных вод и для очистки газовых выбросов щелочи, кислоты, известь и известковое молоко, кальцинированная сода. Широко используются для очистки отходящих газов активный уголь и другие сорбенты, катализаторы, а также синтетические волокна и материалы, идущие на изготовление фильтровальных материалов. [c.73]

    Активированные окись алюминия и Дуциль, оба шелочные по природе, являются неактивными катализаторами скелетной изомеризации олефинов. Но эти же катализаторы становились вполне активными после их обработки разбавленной кислотой. Обработанная кислотой окись алюминия являлась уже кислой по характеру и оставалась таковой после употребления ее в качестве катализатора скелетной изомеризации при 335°С. Кислотность каждого катализатора до и после обработки определялась встряхиванием его в спиртовом или в водном растворе и титровании последнего раствором едкого кали. Силикагель и уголь, не являющиеся активными катализаторами скелетной изомеризации олефинов, не активируются даже и после их обработки кислотой, в противоположность окиси алюминия. Обнаружено также, что эти катализаторы не могут адсорбировать селективно ионов водорода, остающихся после сушки. На основании этих наблюдений можно предпо.тожить, что изомеризация олефинов происходит благодаря адсорбции ионов водорода, вызывающей взаимодействие между катализатором и углеродными атомами двойной связи, и что это взаимодействие частично включает атом или ион водорода, источником которого является катализатор. [c.104]

    Г. термодинамически неустойчив, легко разлагается под влиянием катализаторов, а также при нагревании и нри действии излучения. Г. — сильный восстановитель. В водных р-рах Г. легко подвергается окислению кислородом воздуха эта реакция катализируется ионами меди, марганца, железа, кобальта, никеля и хрома. Смеси Г. с кислородом или воздухом склонны к взрывному сгоранию. При контакте Г. с окислами нек-рых металлов (Си, Ре, Мо, Сг, РЬ, Нд) или веществами с развитой поверхностью (уголь, асбест и др.) может произойти ого воспламенение. Г. — одно из наиболее химически активных веществ. Замещением атомов Н в молекуле Г. органич. радикалами получаются его многочисленные органич. производные. С кислотами Г. образует два ряда солей, напр. К2Н4 НС1 и МаН 2НС1. Соли Г. бесцветны, почти все хорошо растворимы в воде, большинство из них плавится с разложением, соли кислот-окислителей [c.441]

    В качестве носителей этих катализаторов также исследовался широкий ассортимент материалов отбеливающие и прокаленные огнеупорные глины, бокситы, силигакель, оксид алюминия, активный уголь, цеолиты и т. п. На заре развития процессов гидрообессеривания большое внимание уделялось наиболее дешевым природным материалам. Однако по мере ужесточения требований к качеству катализаторов, появляется необходимость избежать зависимости от характеристики прнрюдных материалов, непостоянства их качества, даже в масштабе одного месторождения. Все большее предпочтение отдается синтетическим материалам. На базе исследований природы процессов, для которых создаются зти катализаторы, формулируются особые требования к носителям. На практике к настоящему времени круг носителей, как и активных компонентов, резко сужен - наибольшее распрастранение получил оксид алюминия, [c.94]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Предложены и уже нашли практическое применение различные неплатиновые электрокатализаторы. Так, в щелочных растворах электровосстановление кислорода с достаточно высокой ско-костью протекает на серебре и активированном угле, причем активность последнего повышается при введении в уголь, например, оксидов шпинельного типа (С03О4, С0А12О4 и др.), а также некоторых органических комплексных металлсодержащих соединений— фталоцианинов или порфиринов. Эти комплексные соединения существенно увеличивают активность активированного угля в процессе электровосстановления кислорода и в кислой среде. Для водородного электрода, а также для электроокнсления метанола в щелочной среде может быть использован скелетный никелевый катализатор. Перспективным катализатором анодного окисления водорода в кислой среде оказывается карбид вольфр,а-ма W . [c.264]

    Четыре приведенных выше прописи получения палладиевых катализаторов различаются между собой тем, что согласно первой из них (1) носителем является сернокислый (или углекислый) барий, тогда как согласно остальным— уголь, В прописях 1 и 2 в качестве восстановителя применяется щелочной раствор формальдегида, а в методиках 3 и 4 восстановление осуществляется водородом. Катализаторы, полученные по прописям 1, 2 и 4, приготовляются и хранятся до тех пор, пока не потребуются, причем палладий находится в них в уже восстаповлепном виде и готов к употреблению. В случаеже катализатора, полученного по способу 3 , восстановление палладиевой соли до металла осуществляют лишь перед употреблением и таким образом при хранении не имеет места потеря активности. Катализатор, приготовленный по прописи 1, подобен тому, который обычно рекомендуют для восстановления по способу Розенмун-да. Методику 4 в основном разработал Гартунг полученный с ее помощью катализатор широко применял в своих работах Коп , а также и другие исследователи. В катализаторе, приготовленном по прописи 4, относительное содержание палладия (по весу) в два раза больше, чем в остальных. [c.411]

    Процессы гидрирования и жидкой фа.зе широко используют в органическом синтезе для присоединения водорода по кратным связям, полного или частичною восстановления кислородсодержащих функциональных групп и деструктивного гидрирования с разрывом связей в исходном соединении, В качестве катализаторов используют N1, Со, Си, Р1 и Рс1, скелетные, сплавные или нанесенные. В качестве носителей применяют активный уголь, сульфат бария, оксиды ЛЬОз, СггОд и др. Используют также гомогенные металлокомилексные кат ал и." а-торы. [c.208]

    Регенерация активных углей, в порах которых осажден диоксид марганца, исследована довольно детально [38]. На угле с этим катализатором в интервале температур 250—300 °С полностью окисляются красители, поверхностно-активные вещества, как ионогенные, так и неионогенные, гумусовые вещества, а также органические соединения, адсорбированные из биологически очищенных сточных вод. Попытки реге1герировать в этих условиях уголь после адсорбции дихлорбутадиена и ряда других хлорпроизводных удовлетворительного результата не дали. [c.203]

    Аналогичный процесс без катализатора также запатентован ф 1рмой Асахи . Регенерацию активного угля но этому патенту осуществляют в специальном реакторе при 100—300 С (предпочтительно прп давлении 0,5—6 МПа). Процесс длится до 120 мнн. Уголь отделяют после регенерации от воды при 100—300 °С, т. е. при температуре основного процесса. При этом способе регенерации потери актпвного угля практически отсутствуют, эффективность регенерации не ниже 98%, а эксплуата- июнные расходы намного н же, чем прн обычной термической регенерации [-Ю], [c.204]

    Несомненно, в качестве катализатора лучще применять палладиевую чернь или палладий, нанесенный на уголь. Никель Ренея и другие никелевые катализаторы также применяются, причем обычно с циклогексанолом в качестве донора [79—83], хотя при этом часто не ясно, происходит ли гидрирование в результате переноса водорода или непосредственное гидрирование адсорбированным водородом. Гидрирование за счет переноса водорода в присутствии никелевых катализаторов обычно требует длительного нагревания при высоких температурах выходы продуктов гидрирования непостоянны. Перенос водорода, катализируемый палладием, происходит гораздо легче (часто при комнатной температуре), и выходы очень хорошие [84—87] (табл. 3). При применении палладия в качестве катализатора донором обычно служит циклогексен. Оказалось, что циклогексен по донорной активности примерно равноценен или даже превосходит другие доноры такого типа [85, 86] и имеет то преимущество, что его можно использовать как растворитель. [c.350]

    Электрохимическая активность и стабильность электродов во многом определяются свойствами катализаторов. На первом этапе ири подборе катализаторов для ТЭ использовался богатый экспериментальный материал оргаиического катализа и препаративной химии. Для задач этих областей были разработаны такие катализаторы, как платиновая чернь, никель Ренея, серебро Ренея из сплавов Аё-Са и Ag-N[g, а также платина, нанесенная па высокодисперсный уголь. Конечно, развитие ТЭ 9 131 [c.131]

    Методика. Исследование скорости дегидрирования бутана проводилось на установке проточного типа с неподвижным слоем катализатора, состоявшей из вертикальной электропечи с кварцевым реактором диаметром 2 мм, систем подачи и замера газовых потоков, а также системы для замера и регулирования температуры. В реактор загружали 3—10 мл катализатора с размером частиц около 0,7 мм. Применялся бутан чистотой 99,2—99,6%. Температура в середине слоя катализатора поддерживалась с точностью 1°. Было найдено [14], что в условиях опытов активность катализаторов достигает максимальной величины спустя 4—10 мин от начала подачи бутана и далее остается постоянной в течение 15—20 мин. Поэтому во всех опытах в первые 10 мин газ выбрасывался в атмосферу, а общая длительность дегидрирования составляла 20—25 мин. Регенерация катализатора после каждого опыта проводилась воздухом при строго постоянных условиях (650 С). Снижение начального давления бутана достигалось разбавлением его очищенным азотом. Выходы бутилена, избирательность и коэффициент увеличения объема газа рассчитывались по составу полученного контактного газа. Образующийся уголь в расчетах не принимался во внимание, что практически не сказывается на величине выходов за цикл, но приводит к небольшому завышению избирательности (не более, чем 1 отн.%). При таком расчете отклонение избирательности от 1 вызывается только крекингом и, следовательно, по этой величине избирательности легко рассчитать скорость крекинга. В расчетах принимается, что исходный бутан содержит 100% н - С4Н1д, а под содержанием н - С4Нд фактически понимается сумма н - С4Н8 и [c.72]


Смотреть страницы где упоминается термин Катализаторы угли также Активный: [c.198]    [c.263]    [c.263]    [c.220]    [c.754]    [c.441]    [c.396]    [c.21]    [c.43]    [c.431]    [c.293]    [c.398]    [c.396]    [c.306]   
Технология катализаторов (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активные угли

КСМ, активном угле GKT

Катализатора активность

Катализаторы активные

Катализаторы на угле

Уголь Угли активный



© 2024 chem21.info Реклама на сайте