Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологические кислотами

    Методы, применяемые для предварительной очистки стоков, могут быть весьма различными. Для удаления взвешенных и плавающих веществ с плотностью, отличающейся от плотности воды, применяют различного вида отстойники (бензоуловители, маслоуловители, нефтеловушки и отстойники Дорра, песколовки, жироуловители и др.)- При содержании в сбрасываемых стоках взвешенных и плавающих волокнистых веществ применяют решетки, устанавливаемые на всасывающих трубопроводах резервуаров и в открытых каналах. В биологические очистные сооружения сточные воды должны подаваться нейтральными. Поэтому в процессе предварительной очистки необходима их нейтрализация. Иногда нейтрализацию стоков предусматривают в общезаводском нейтрализаторе, в котором, помимо нейтрализации, происходит и усреднение состава стоков, что очень важно для поддержания стабильного режима очистки на биологических очистных сооружениях. Для нейтрализации кислых сточных вод применяют наиболее дешевую щелочь—гидрат окиси кальция Са(ОН)г, которую вводят в сточные воды в виде известкового молока. В большинстве случаев при взаимодействии Са(ОН)а с кислотами образуются нерастворимые соли кальция, которые, выпадая в осадок, могут забивать сети канализации. [c.258]


    Водородная связь служит причиной некоторых важных особенностей воды — вещества, играющего огромную роль в процессах, протекающих в живой и неживой природе. Она в значительной мере определяет свойства и таких биологически важных веществ как белки и нуклеиновые кислоты. [c.156]

    В анаэробных условиях биологически перерабатываются твердые, полужидкие вещества и осадки сбраживаются осадки первичных отстойников и избыточного активного ила аэробных биологических систем очистки бытовых вод и их смесей с некоторыми промышленными сточными водами. Основное преимущество анаэробного сбрах<ивания — минимальное образование биологически активных твердых веществ. Из перерабатываемых органических веществ только жиры, белки и углеводы обеспечивают выход газа при анаэробной переработке. Образующиеся при сбраживании летучие органические кислоты под действием метановых бактерий перерабатываются в метан, воду и биологически активное твердое вещество. [c.105]

    При биологическом использовании глюкозы в качестве источника энергии ее сгорание протекает не в одну стадию. Разложение глюкозы представляет собой сложный процесс, включающий более 25 стадий. На многих из этих стадий высвобождаемая энергия запасается путем синтеза молекул АТФ. Анаэробная ферментация, или гликолиз, обеспечивает предварительное разложение глюкозы с образованием пировиноградной кислоты, а цикл лимонной кислоты завершает окисление углерода в СО2. Атомы водорода передаются молекулам-переносчикам, НАД и ФАД. Эти молекулы повторно окисляются в дыхательной цепи, где происходит дальнейшее запасание энергии путем синтеза новых молекул АТФ, а атомы водорода используются для восстановления О2 в Н2О. [c.338]

    В качестве эмульгаторов применяются калиевые и натриевые соли природных и синтетических жирных кислот и диспропорционированной канифоли, алкилсульфонат натрия и др. Этими эмульгаторами заменяется некаль (натриевая соль дибутилнафталинсульфокислоты), применяющийся в производстве бутадиеннитриль-ных каучуков. Выбор эмульгатора обусловлен его доступностью, способностью обеспечивать необходимую скорость полимеризации, устойчивостью латекса на всех стадиях технологии производства и способностью биологически разлагаться при очистке сточных вод. Применяемые анионоактивные эмульгаторы не оказывают влияния на микроструктуру каучука. Бутадиен-нитрильный каучук СКН-18, полученный при 30°С с применением некаля, алкилсуль-фоната натрия и калиевого мыла синтетических жирных кислот, имеет одну и ту же микроструктуру транс-1,4-звеньев 60,0—63,8%, г с-1,4-звеньев 26,2—30,2% и 1,2-звеньев 8,0—11% [9]. [c.358]


    Аминокислоты и белки. Большое биологическое значение имеют аминокислоты — соединения со смешанными фунК циями, в которых, как в аминах, содержатся аминогруппы — N11 и одновременно, как в кислотах,— карбоксильные группы —СООН. В качестве примера можно привести простейшие аминоуксусную кислоту, или глицин, и аминопропионовую кислоту, или аланин. Строение других природных аминокислот этого типа можно выра-зить приведенной ниже общей формулой (где R — углеводородный радикал, который может содержать и различные функциональные группы)  [c.497]

    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]

    Сванте Аррениус (1859—1927), профессор университета в Стокгольме и директор Нобелевского института. Предложил теорию, объясняющую свойства растворов солей, кислот и оснований и получившую название теории электролитической диссоциации. Аррениусу принадлежит также ряд исследований по астрономии, космической физике и в области приложения физико-химических законов к биологическим процессам. [c.233]

    Фирмой Дюпон (Канада) для производства полупродуктов получения найлона — адипиновой кислоты и гексаметилен-диамина— разработан новый процесс очистки концентрированных сточных вод, богатых азотсодержащими соединениями, путем биологической нитрификации — деиитрификациц. В разработанном процессе предусматривается сочетание аэробного и анаэробного окисления. Нитрификация протекает в аэробных условиях в присутствии диоксида углерода, причем аминный и аммиачный азот биоокисляется до нитритов и нитратов. Денитрификация протекает в анаэробных условиях в среде биораз-лагаемого продукта (обычно метанола). При этом нитраты восстанавливаются до нитритов и в конечном счете до газообразного азота. Поступающие на очистку стоки имеют следующую характеристику содержание общего органического углерода — 3000 мг/л NO2 , N0 3, NH4+ в пересчете на азот соответственно 800, 90 и 230 мг/л органического азота в пересчете на азот —240 мг/л, БПК —6000 мг/л. Процесс позволяет удалять 98% органических веществ и 80—90% общего азота сточных вод. [c.105]

    Молекулы аминокислот, белков, нуклеиновых кислот и других биологических соединений составлены из атомных группировок, резко различающихся по характеру взаимодействия [c.45]

    Одним из процессов, который получил большое применение, является фторирование. Оно широко используется в технологии редких элементов, в производстве синтетических материалов и биологически активных препаратов. Имеется много работ по изучению реакций кислот и оснований в безводном НР и других фторсодержащих растворителях. В ходе этих исследований было обнаружено большое число новых, весьма своеобразных соединений. В качестве примеров назовем некоторые из этих веществ. [c.286]

    Одним из процессов, который получил огромное применение за последние десятилетия, является фторирование. Оно широко используется в технологии редких элементов, в производстве синтетических материалов и биологически активных препаратов. В процессе фторирования весьма трудной задачей является подбор растворителя для проведения этой реакции, поскольку фтор разрушающе действует на большинство веществ. Это обстоятельство вызвало появление значительного числа работ по изучению реакций кислот и оснований в безводном НР и других фторсодержащих растворителях. В этих исследованиях было обнаружено большое количество новых, весьма своеобразных соединений. В качестве примеров назовем некоторые из этих веществ. [c.255]

    Цепные реакции являются очень распространенными. По цепному механизму, на-Рис. 165. Схема развет- пример, могут совершаться многие реак-вляю щихся цепей. ции окисления углеводородов, в частности — важные в техническом отношении реакции получения альдегидов, спиртов, кислот, кетонов, перекисей и др. Н. Н. Семеновым было показано, что многие особенности процессов сгорания горючего в цилиндрах моторов двигателей внутреннего сгорания обусловлены цепным механизмом процесса. Процессы полимеризации, играющие важную роль в образовании высокомолекулярных соединений, большей частью протекают по типу цепных реакций, (В. А. Каргин, С. С. Медведев и др.) Большую роль цепные реакции играют в биологических процессах. Хорошо известно, что и процессы деления атомных ядер в кинетическом отношении могут протекать по типу цепных реакций. [c.486]


    Уловленные парафин и жирные кислоты отводятся в сборную емкость. Сточные воды нейтрализуются и направляются на биологические очистные сооружения. [c.571]

    Алкилат дополнительно подвергают очистке кислотой и глиной, после чего получают высококачественный полупродукт для производства биологически разлагающихся моющих средств. [c.257]

    Исследования проведены с водой после буферного пруда, в который поступают стоки нефтеперерабатывающих заводов после заводских очистных сооружений и сточные воды цеха синтетических жирных кислот и завода синтетического спирта после неполной биологической очистки. [c.228]

    В КГ1Т0ПЫХ асимметрический атом углерода (оп в формуле помечем звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве они нот. строены зеркально и отображают пространственную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стерео изомерией, а соответствующие изомеры— зеркальными изомерами. Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме например, для приведенных на рнс. 130 зеркальных изомеров молочной кислоты  [c.462]

    Антибиотики. Пенициллин был первым антибиотиком, производство которого было осуществлено в промышленном масштабе. Он был открыт в 1928 г. А. Флемингом, а выпуск его начался лишь в 1939 г. после преодоления многих технических затруднений. Пенициллин образуется ферментативным путем, и на первой стадии производства получается раствор низкой концентрации. Дальнейшая переработка заключается в концентрировании раствора и выделении пенициллина в чистом виде. Большую трудность представляет низкая сопротивляемость пенициллина действию ряда соединений, присутствующих в растворе вместе с ним (кислоты, основания, вода, ионы тяжелых металлов, окислители, некоторые энзимы), и повышенной температуры. Эти соединения и условия приводят к потере биологической активности пенициллина. Гюэтому необходимо подобрать такие методы переработки, чтобы были удалены вредные компоненты или хотя бы сведено до минимума их действие. В производственном цикле применяется трехкратная экстракция, причем потери продукта сведены к минимуму [240, 257, 263, 268, 270, 273, 275, 277, 280, 281, 294]. [c.419]

    Крупнотоннажным отходом нефтеперерабатывающей и химической промышленности являются сернисто-щелочные сточные воды. Они содержат сульфиды, гидросульфнды, меркаптаны, фенолы и некоторые другие соединения. Их обезвреживают методом карбонизации и окисления кислородом воздуха. При наличии в этих сточных водах заметного количества нафтеновых кислот последние целесообразно выделять с последующей переработкой в мылонафт. Если количество сернисто-щелочных сточных вод невелико, их можно подвергать биологической очистке в смеси с общими сточными водами. На заводах, работающих без сброса сточных вод, избыточные сернисто-щелочные воды после локальной очистки наиравляют на установку термического обезвреживания. [c.98]

    В результате проведенных исследований в СССР в качестве эмульгатора была принята натриевая соль сульфопроизводных газойлевой фракции бакинской нефти, подвергавшейся очистке от нефтяных масел и примесей железа. Этот эмульгатор вошел в практику эмульсионной полимеризации хлоропрена для получения каучуков и латексов под маркой СТЭК, обеспечивая достаточную стабильность эмульсии и латексов. СТЭК применялся в эмульсии в сочетании с канифольным мылом, которое способствует повышению стабильности эмульсии в процессе полимеризации. В процессе выделения каучука из латекса, при подкислении, кислоты канифоли выделяются в свободном виде и смешиваются с каучуком, что способствует повышению пластичности и стабильности поли-хлоронрепа и улучшению его обрабатываемости. Вследствие того, что СТЭК не подвергается биологическому разложению, он в настоящее время заменяется, например, на алкилсульфонат натрия — волгонат (очищенные сульфопроизводные низкомолекулярных парафинов), а также на другие более эффективные алкилсульфонаты (например, марка Е-30), которые подвергаются биологическому разложению и позволяют очистить сточные воды. [c.371]

    Нуклеиновые кислоты, составляющие ДНК (молекулу, контролирующую воспроизводство клсгтки и синтез белков), могут повреждаться двумя способами. Меньшую оп.1снссть представляют мутации, изменения в структуре ДНК, приводящие к синтезу новых белков. Большинство мутаций убивает клетку. Если мутация затронула сперматозоид или яйцеклетку, изменение может проявиться в ниде дефектов потомства. Некоторые мутации вызывают рак — неконтролируемый рост и метаболизм клеток. Если же повреждены многие ДНК во м1югих клетках, жизненно важные белки не смогут больше образовываться и поск дует немедленная смерть. В табл. У.Ю приведен список факторов, определяющих степень радиационного биологического поражения. Табл. У. 11 показывает биологическое действие возрастающих доз радиации. [c.353]

    Полы в помещениях, где возможен разлив значительного количества жидкости, должны быть нз непроницаемых материалов. Полы а помещениях, где применяются агрессивные вещества (кислоты, щелочи и т. п.), должны быть устойчивыми к воздействию этих веществ и иметь уклон не менее 0,01 к трапу или зумпфу канализации загрязненных производственных стоков. В случае, если химически загрязненные стоки идут на биологическую очистку, следует предусматривать мероприятия, обеспечивающие соблюдение требований пп. 3—48 и 3—49 настоящих правил. Допускается также сухай [c.50]

    Производственные сточные воды перед сбросом в магистральную сеть производственной канализации в целях предупреждения образования пожаро- и взрывоопасных смесей в канализационной сети должны подвергаться иервичной очистке на локальных установках или на установках для группы производств путем извлечения, регенерации и -утилизации ценных продуктов, нейтрализации кислот и щелочей, извлечения пожаро- и взрывоопасных веществ, масел, смол, токсичных и других веществ, вредных для водоемов й биологических очистных сооружений. [c.56]

    Производственные загрязненные сточные воды должны подвергаться первичной очистке на локальных установках для извлечения, регенерации и утилизации продуктов, нейтрализации кислот и щелочей, извлечения пожа-ро- и взрывоопасных и других веществ до пределов, допустимых для сброса этих стоков на биологические и другие очистные сооружения, что должно предусматриваться технологической частью проекта. [c.102]

    Биологическое поражение нефтяных масел существенно повышает их коррозионную активность по отношению к металлам, в том числе к алюминию и его сплавам, не корродирующим при контакте с маслами в обычных условиях эксплуатации. Это связано с усилением химической коррозии из-за образования в масле при жизнедеятельности микроорганизмов таких агрессивных веществ, как органические и минеральные кислоты, аммиак, свободная сера, двуокись углерода, сероводород. Может наблюдаться Также электрохимическая коррозия— на отдельных участках поверхности металла образуются колонии микроорганизмов (в виде наростов), что усиливает аэрацию, увеличивает концентрацию кислорода на этих участках и создает там-разность потенциалов. Другой вид электрохимической коррозии возникает в результате жизнедеятельности сульфатвосстанав-ливающих бактерий, под действием которых из сульфатов образуются ионы серы, реагирующие затем с металлом, образуя сульфиды. Этот процесс получил название катодной деполяризации. Коррозии способствует склонность многих микроорганизмов к разрушению [c.71]

    Некоторые химические вещества относятся к группе так называемых ферментных ядов. Они связывают жиз-ненно важные биологические катализаторы организма—ферменты и тем вызывают тяжелые нарушения его функций. Сюда относятся мышьяк и его соединения, тяжелые металлы, в том числе ртуть, синильная кислота и ее соли, фосфорорганические соединения и дв. [c.93]

    Синильная кислота используется в качестве исходного сырья в процессах получения акрилонитрила (из ацетилена или окиси этилена), ацетонциангидрина, эфиров метакриловой кислоты, различных аминокислот — биологически активных веществ, гербицидов, новых моющих средств, комплексообразователей для выделения драгоценных металлов из рудных растворов и т. п. [c.278]

    Если реагент подается с постоянной скоростью, то соотношение мольных конценттраций в месте подачи может изменяться от —2 до -(-2. Когда скорость реакции настолько высока, что это может влиять на направление реакции, то качество конечных продуктов может быть либо высоким, либо низким. Например, в случае реакции нейтрализации чувствительного химического или биологически активного соединения при введении кислоты или основания с постоянной скоростью в центр зоны пере-мешивания могут произойти столь сушественные колебания pH в месте ввода, что, ло-видимому, это станет од- [c.201]

    Источники эти могут рассматриваться в различных аспектах, например в чисто биологическом, как водоросли, фвто- и зоопланктон, бактерии, липидная часть высших растений и т. д. Возможно также их изучение с точки зрения особенностей валового состава органической массы сапропелевое вещество, гумусовое вещество (для нефтей важна его липидная составляющая) и пр. Возможно также рассмотрение исходных веществ по типу содержащихся в них органических молекул кислот, спиртов, эфиров и пр., могущих служить источниками углеводородов нефтей. Этот аспект и будет главным образом рассматриваться далее. Желающих более подробно ознакомиться с условиями образования, аккумуляции и составом органического вещества мы отсылаем к интересной монографии Тиссо и Вельте [1]. [c.179]

    Органическое вещество отмерших организмов фито- и зоопланктона, а также и более организованных форм в водной толще и в донных илах испытывает интенсивные преобразования. Интенсивная микробиологическая деятельность сопровождается распадом первичного субстрата и образованием бактериальной биомассы. В результате содержаниг белковоподобных соединений уменьшается в 100—200 раз, свобод ных аминокислот в 10—20 раз, углеводов в 12—20 раз, липидов в 4—8 раз. Одновременно с этим соверншются процессы поликондеисации, полимеризации непредельных соединений и др. Возника от несвойственные биологическим системам вещества, составляющие основу органической части нефти—керогена. Происходит полимеризация жирных кислот, гидроксикислот и непредельных соединений с переходом образующихся продуктов уплотнения в нерастворимые циклическую и [c.32]

    Блок оборотного водоснабжения состоит из насосной, водоох-ладителей-градирен, нефтеотделителей (для первой- системы оборотного водоснабжения), установки по обработке воды для предотвращения коррозии, карбонатных отложений и биологических обрастаний холодильной аппаратуры и трубопроводов (для первой и второй систем оборотного водоснабжения), продуктоловушки (для четвертой системы оборотного водоснабжения производства синтетических жирных кислот), нейтрализатора (для четвертой системы оборотного водоснабжения производства неорганических кислот). [c.196]

    Водород входит в состав кислот и щелочей. Колнчестзо (концентрация) ионов водорода определяет кислотность среды и оказывает огромное влияние на ход многих химических и биологических процессов, [c.99]


Смотреть страницы где упоминается термин Биологические кислотами: [c.58]    [c.71]    [c.149]    [c.212]    [c.253]    [c.360]    [c.48]    [c.116]    [c.134]    [c.119]    [c.143]    [c.217]    [c.191]    [c.249]    [c.66]    [c.180]    [c.184]    [c.100]    [c.38]   
Методы разложения в аналитической химии (1984) -- [ c.213 , c.215 , c.217 , c.224 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Аминоадипиновая кислота биологических объектах

Аминомасляная Аминомасляная кислота в биологических объектах

Аминомасляная кислота в биологических объектах

Аминомасляная кислота в биологических объектах Амино меркаптопропионовая кислота Цистин

Аминомасляная кислота в биологических объектах в биологических объектах

Аминомасляная кислота в биологических объектах янтарную кислоту

Анализ жирных и других кислот в крови и некоторых биологических жидкостях и материалах

Анализ жирных и других кислот в крови, тканях и биологических жидкостях

Антонова, Л. Ш. Сальникова. Выяснение возможности биологической очистки сточных вод производства крезолов окислительным декарбоксилированием. и-толуиловой кислоты

Арндта—Эйстерта биологический жирных кислот

Аспарагиновая кислота в биологических использование бактериями

Аспарагиновая кислота в биологических объектах

Баранский В.А., Елисеева Г.Д., Бычкова Т.И., Тимохин Б.В. Разработка эффективного метода получения левулиновой кислоты из отходов древесины и создание на ее основе новых гетероциклических систем с биологической активностью и экстракционной способностью

Биологическая роль нуклеиновых кислот

Биологически важные кислоты

Биологические активные вещества глютаминовой с аспарагиновой кислот

Биологические материалы отгонка муравьиной кислоты

Биологические функции нуклеиновых кислот

Биологические функции нуклеиновых кислот и нуклеотидов

Биологическое значение нуклеиновых кислот

Биологическое значение повреждений нуклеиновых кислот

Биологическое окисление кислот

Глутаминовая кислота в биологических объектах

Глютаминовая кислота биологически активных веществах

Дезоксирибонуклеиновые кислоты биологическая роль

Диаминомасляная кислота биологических объектах

Жирные кислоты в биологических материалах

Изменения биологических свойств нуклеиновых кислот

Кератин шерсти, аминокислотный состав Кетоадипиновая кислота в биологических объектах

Контактная серная кислота, производство биологические методы

Макромолекулярное строение нуклеиновых кислот и их биологическая функция

Метил оксиглутаминовая кислота в биологических объектах

Метилирование биологическое Метилкротоновая кислота

Нуклеиновые кислоты Количественное определение нуклеиновых кислот в биологическом материале

Нуклеиновые кислоты биологическая ингибиторы

Нуклеиновые кислоты изменения биологических свойст

Нуклеиновые кислоты, биологическая рол

Окисление биологическое Окисление жирных кислот

Оксиглутаминовая кислота, декарбоксилирование Оксиглутаминовая кислота в биологических объектах

Окситриптофан в биологических Оксифенилпировиноградная кислота в биосинтезе тирозина

Окситриптофан в биологических Оксифенилуксусная кислота

Органические фосфаты и биологически важные кислоты

Пипеколиновая кислота в биологических объектах

Пировиноградная кислота в биологических объектах

Пировиноградная кислота в биологических объектах изолейцина и валина

Получение глюкуроновой кислоты биологическим путем

Производные полиеновых кислот — эйкозаноиды строение и биологическое действие

Распространение а,Р-ненасыщенных карбоновых кислот в биологических объектах

Сахара (пентозы).— Пиримидиновые основания.— Пуриновые основания.— Нуклеозиды.— Нуклеотиды.— Нуклеиновые кислоты.— Биологическое значение нуклеиновых кислот Ферменты

Синильная кислота биологическое

Тиомочевая кислота, биологическая

Тиомочевая кислота, биологическая активность

Уксусная кислота в биологических процессах

Хлорная кислота биологическое действие

Цистеиновая кислота из цистеинсульфиновой кислоты Цистеиновая кислота в биологических объектах

Цистеинсульфиновая кислота в биологических объектах

Шакирова Р.Ш., Глухарев Ю.А., Мамаева А.А. Биологическое действие тримеллитовой кислоты и ее ангидрида



© 2024 chem21.info Реклама на сайте