Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменения биологических свойств нуклеиновых кислот

    Изменения биологических свойств нуклеиновых кислот [c.280]

    В основе всех жизненных процессов, а также структур живых организмов, тканей и клеток лежат такие вещества, как белки, нуклеиновые кислоты, крахмал, гликоген, целлюлоза, построенные из гигантских цепных молекул. Продукты питания (хлеб, мясо, рыба, овощи), одежда и обувь (текстильные ткани, искусственное волокно, кожа, резина, пластмассы) образованы различного рода коллоидными системами. Изменение структуры и поглощающих свойств почв, выветривание горных пород, вынос частиц ила и глин реками, образование облаков и туманов — тесно связаны с коллоидными процессами. Производство строительных материалов (цемент, гипс), добыча и переработка нефти (бурение скважин, обезвоживание нефти), обогащение ценных руд методом флотации, производство лаков и красок, кинофотоматериалов, бумаги, сажи, удобрений в значительной степени основано на использовании свойств различных суспензий и эмульсий. В фармацевтической промышленности многие лекарственные вещества производятся в форме тонких суспензий или эмульсий, мазей, паст, кремов. Важное значение в промышленности, в сельском хозяйстве и в военном деле имеют различные дымы и туманы. Развитие авиационной и автомобильной промышленности, машиностроения и приборостроения было бы невозможно без резины и различных пластмасс. Изделия из целлюлозы, резины, пластмасс, искусственного волокна приобретают все большее значение в технике и в быту. Можно сказать, что материальная основа современной цивилизации и самого существования человека и всего биологического мира связана с коллоидными системами. [c.7]


    Шведский ученый Пер-Оке Альбертсон предложил использовать для разделения бактерий, вирусов, фрагментов клеток, мембран, ядер, белков, нуклеиновых кислот и любых других частиц биологического происхождения двухфазные водные растворы полимеров — иолиэтиленгликоля, декстрана и их производных [2, 279, 280]. Фракционирование в двухфазной водной системе основывается на избирательном распределении частиц между этими фазами, аналогичном распределению растворимых веществ. Метод Альбертсона получил широкое распространение и используется во многих биохимических и микробиологических лабораториях, так как позволяет в мягких условиях, без нарушения структурной целостности и изменения нативных свойств осуществлять выделение и очистку лабильных биологических объектов, а также дать определенную информацию о их строении. Реализация этого метода в промышленном масштабе, например, для выделения вирусов или получения чистых ферментов, не встречает, по мнению автора, принципиальных трудностей, однако в очистке воды он не может быть использован. Очевидно, и любая другая модификация экстракции жидкость — жидкость неприменима при микробной очистке промышленных сточных вод и, конечно, такой метод совершенно непригоден для водоподготовки. [c.194]

    Второй механизм действия нуклеозидных антиметаболитов получил уже известное нам название летального синтеза (разд. 3.6.2.1). Он заключается в том, что ферменты биосинтеза нуклеиновых кислот обманываются более глубоко не замечая подмены, они включают измененные нуклеозиды в состав нуклеиновой кислоты. Однако содержащая антиметаболит полимерная молекула становится неспособной выполнять свои биологические функции. В обоих случаях наступает гибель клеток или блокируется их деление. Вследствие этого антиметаболиты нуклеозидов обладают токсическими, антимикробными, противовирусными и противоопухолевыми свойствами. [c.582]

    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]


    В настоящем разделе описаны некоторые экспериментальные подходы, позволяющие изучать характер инактивации белков и нуклеиновых кислот ионизирующей радиацией. Феномены, наблюдаемые в такого рода экспериментах, отражают заключительный этап лучевого поражения, когда стойкие структурные повреждения уже привели к необратимым изменениям биологических свойств макромолекулы. Эти данные могут служить отправной точкой биофизического анализа механизма инактивации при прямом действии излучения. Биофизический анализ должён воссоздать все предшествующие этапы размена энергии излучения, которые в конечном счете и сформировали наблюдаемые функциональные нарушения. [c.66]

    Существенно иного подхода требуют химические методы, используемые для функциональных (биологических) исследований нуклеиновых кислот. Во-первых, при функциональных исследованиях допустима, как правило, модификация лишь очень малого количества мономерных звеньев полимера, поэтому для корреляции химических и функциональных изменений необходимо располагать сведениями о механизме и кинетике основных и побочных реакций, строении и свойствах (включая функциональные свойства) не только конечных, но и промежуточных продуктов реакции. Во-вторых, поскольку модификации подвергается незначительное количество звеньев, важно знать не только их количество, но и распределение по цепи. В-третьих, модифицированные звенья разного строения могут иметь различные функциональные свойства, так что побочные реакции, даже если их скорость на порядки ниже скорости основной, могут вносить существенный вклад в изменение функциональных свойств полинуклеотида, затрудняя, а иногда и делая невозможной рациональную трактовку результатов. Последнее обстоятельство особенно важно учитывать при функциональных исследованиях генетических нуклеиновых кислот (ДНК, вирусных РНК). Применяемые методы детектирования позволяют обнаружить в этом случае изменения отдельных молекул полимера, которые могут содержаться в анализируемой смеси в незначительных количествах. При модификации же негенетических нуклеиновых кислот (например, транспортной РНК) удается наблюдать лишь суммарное изменение функциональных свойств, причем вклад кал<дого из модифицированных компонентов пропорционален его содержанию в смеси. [c.19]

    Переход от этой в основном упорядоченной конформации к отдельным цепям беспорядочного клубка приводит к изменению молекулярных размеров, которые проявляются в изменении светорассеяния или свойств, основанных на внутреннем трении макромолекул. За изменениями кажущейся плотности и двукратным уменьшением кажущегося молекулярного веса ДНК за счет диссоциации двойной спирали можно проследить при помощи ультрацентрифугирования в градиенте плотности (гл. IV). Наиболее наглядным доказательством существования перехода спираль — клубок в ДНК является значительное изменение ультрафиолетового спектра поглощения (гл. V). Кроме этих физико-химических методов, однозначным критерием целостности нативной спиральной структуры служит биологическая активность некоторых препаратов ДНК. Авери и др. [3411 обнаружили, что контакт некоторых бактерий с растворами ДНК может привести к трансформации наследственных характеристик микроорганизмов. Эта трансформирующая активность , которая исчезает после денатурации нуклеиновой кислоты, может быть использована в качестве наиболее чувствительного средства определения доли молекул, присутствующих в нативной двойной спирали [342, 343]. [c.127]

    Как уже неоднократно отмечалось, фундаментальным свойством белков нуклеиновых кислот является их способность узнавать определенные низкомол кулярные соединения или другие полимеры. Результатом узнавания является образование стабильных комплексов с этими лигандами. Обычно это не приводит к изменениям химической структуры биополимера и позволяет неоднократно использовать эти же молекулы биополимера, если это узнавание влечет за собой какие-либо биологические последствия. В то же время отсутствие каких- ибо химических последствий означает, как правило, отсутствие каких-либо следов пребывания биополимера в виде комплекса р соответствующим лигандом. Между тем во многих случаях желательно, чтобы такой след остался для определения области биополимера, принимавшей участие в узнавании. В некоторых случаях желательно сделать это узнавание необратимым для того, чтобы повредить биополимер с соответствующими биологическими последствиями. Обе эти проблемы решаются благодаря подходу, известному как аффинная модификация (или аффинное мечение). [c.329]

    В последнее время появились данные, свидетельствующие о возможности появления в высокоупорядоченных органических структурах более сильных магнитных эффектов типа ферромагнетизма и антиферромагнетизма, свидетельствующих о коллективных спиновых взаимодействиях. В спектрах магнитного резонанса это приводит к появлению чрезвычайно широких (сотни и тысячи эрстед) линий весьма большой интегральной интенсивности. Впервые эти эффекты были обнаружены на биополимерах — нуклеиновых кислотах и нуклеопротеидах [20, 21], а затем на синтетических полимерах с сопряженными связями [22, 23]. Появление широких линий сопровождается возникновением положительной статической магнитной восприимчивости, насыщающейся в сравнительно слабых магнитных полях. Следует отметить, что могут быть случаи, когда резонансная линия уширяется настолько, что становится ненаблюдаемой, и об ее аномальных магнитных свойствах можно судить только по статическим измерениям [23]. Ряд данных [24, 25] позволяет сделать вывод о том, что появление эффекта связано со структурными характеристиками изучаемых объектов. Удалось обнаружить закономерные изменения магнитных свойств биологических структур в ходе некоторых важнейших биологических процессов [26]. Полученные данные были позднее подтверждены в ряде лабораторий (см., например, [27, 28]). [c.222]


    Заканчивая краткий обзор главы, посвященной нуклеиновым кислотам и их биологической роли, следует отметить, что за последние годы получено много новых данных. Удалось выяснить основные пути образования нуклеотидов, являющихся исходными веществами для синтеза нуклеиновых кислот. Установлено, что ДНК, РНК и белок составляют единую взаимосвязанную систему. Выделены основные ферментные системы, катализирующие образование ДНК и РНК, что позволило осуществить при помощи этих ферментов синтез нуклеиновых кислот вне организмов. В этой системе белок имеет особое значение, так как только он один обладает каталитическими свойствами и только при его участии возможен синтез самих нуклеиновых кислот. В свою очередь, познание роли нуклеиновых кислот в жизненных процессах и в явлениях наследственности может оказать существенную помощь в разработке новых и эффективных методов направленного изменения природы организмов. [c.310]

    С первых лет возникновения радиобиологии как самостоятельной науки и по настоящее время на основании ряда данных предполагается, что ведущим звеном в радиационном поражении организма является изменение нуклеиновых кислот. Однако в литературе имеется весьма ограниченное количество экспериментальных данных, которые показывали бы, что свойства нуклеиновых кислот меняются сразу после облучения in vivo в биологических дозах. [c.44]

    В связи с большой биологической ролью нуклеиновых кислот в последние годы проведено изучение изменения их свойств в зависимости от возраста организма и митотической активности клеток. Высказаны мнения, что в митотически неактивных клетках происходит инактивация ДНК и РНК. В свою очередь это может вызвать нарушение репродуктивных свойств старых клеток и синтеза белка. Но было бы ошибочно в перечисленных признаках, сопутствующих старости, видеть ее причину. [c.199]

    Однако для большого числа, а возможно, и для большинства функционально активных белков и нуклеиновых кислот могут проис.чодить и глубокие изменения конформации, приводящие к новой структуре с резко отличающимися от ис.чод-ной свойствами, в том числе способностью выполнять определенные биологические функции. Такие изменения могут существенно повлиять на взаимное расположение групп, участвующих в узнавании специфического лиганда, либо усиливая, либо ослабляя взаимодействие с этим лигандом. Одним из таких изменений является денатурация биополимера, что, как правило, приводит к полностью неактивным молекулам, причем нередко это Изменение оказывается необратимым. Однако это может быть и пере.чод в новую определенную структуру, достаточно резко отличающуюся от исходной, но имеющую свой структурный облик, подвер- [c.114]

    Показано [145—150], что, кроме перечисленных химических изменений, при облучении происходит дезаминирование, выделение неорганического фосфата и свободных пуриновых оснований, увеличение азота аминогрупп по Ван-Сляйку, увеличение титруемой кислотности и уменьшение поглощения в ультрафиолетовом свете при 260 личк. При облучении свободных оснований [146] отмечены многие из этих явлении и обнар5"жено еще более резкое уменьщение поглощения в ультрафиолетовом свете. Ясно, что многие из этих изменений влияют на физические свойства дезоксирибонуклеиновой кислоты и особенно на структурную вязкость. Очень слабое дезаминирование, даже без разрывов цепочки кислоты, уже может быть, например, достаточным, чтобы вызвать генную мутацию. Биологические эффекты изменений нуклеиновых кислот при действии излучения не следует объяснять исключительно разрывами цепочек, образованием мостиков или другими коренными изменениями структуры полимера. [c.258]

    За исключением влияния молекулярного веса иа вязкость, седиментацию и связанные с ними физические свойства [347—349[, транспортные рибонуклеиновые кислоты по своему поведению сходны с микросомальиыми нуклеиновыми кислотами (рис. 8-34), хотя их нуклеотидный состав совершенно различен. Изменения коэффициента экстинкции и оптического врашения с изменением температуры вновь указывают на суш,ествование структуры, связанной водородными связями [344, 349, 352], и это подтверждается низкой скоростью реакции с формальдегидом [349[. То, что их структура несколько более стабильна и более упорядочена, чем у микросомальных РНК, видно из того факта, что они имеют более высокую температуру плавления и характеризуются более резким подъемом температурной кривой (т. пл. примерно 60 в 0,1 М растворе хлористого натрия, причем возрастание оптической плотности начинается с 40 ). Повышение или понижение ионной силы увеличивает или уменьшает температуру плавления, а мочевина в высокой концентрации заметно влияет на оптическое поглощение даже при комнатной температуре, что обусловлено понижением температуры плавления [349[. Увеличение оптического поглощения в бессолевом растворе фактически достигает того же значения, что и при максимальной температуре (24%). Эти изменения вновь полностью обратимы, и действительно, при нагревании до 70° при pH 6,8 ((X = 0,2) РНК не теряет своей биологической активности [344]. Хотя остаточным гипохромизмом зачастую можно пренебречь, особенно в случае ДНК, можно заметить, что в случае растворимой РНК из печени крысы [351 [ структурный (после нагревания или прибавления 6 М мочевины) гиперхромизм составляет приблизительно 21%, а гиперхромизм при щелочном гидролизе равен 49%. Это показывает, что и в отсутствие вторичной структуры с ее водородными связями значительная часть оснований остается в таком состоянии, что их плоскости параллельны. (Ср. с соответствующими данными для рибосомальной РНК из Е. oli.) [c.622]

    Данные биохимических и генетических исследований свидетельствуют о том, что нуклеиновые кислоты определяют процесс синтеза не только реплик этих кислот, но и белков. Можно привести следующие факты, указывающие на фундаментальную роль нуклеиновых кислот в биологических процессах. Прямыми опытами показано, что изменение ДНК некоторых бактерий влияет на их наследственные свойства. ДНК, изолированная из одного типа бактериальной клетки (пневмококк), может быть использована для наследственноустойчивого превращения клетки второго типа. Так, штамм, неустойчивый по отношению к пенициллину, может быть превращен в пенициллиноустойчивый путем введения соответствующей ДНК. Был открыт целый ряд такого рода явлений [ ]. При внедрении только нуклеиновой кислоты бактериофага в клетку в ней репродуцируется весь бактериофаг, состоящий из нуклеиновых кислот и белков. Сходные факты обнаружены при исследовании вирусов, в частности вируса табачной мозаики, также состоящего из нуклеиновой кислоты (РНК) и белковой оболочки. Оказалось, что чистая РНК вируса обладает инфицирующей способностью — при введении в клетку РНК в ней размножается вирус, т. е. белок достраивается в соответствии с природой, введенной РНК [ ]. [c.232]

    К ВМС относятся многие вещества, имеющие важное народнохозяйственное и биологическое значение. Сюда входят почти все синтетические волокна, пластмассы, каучуки, а также почти все материалы животного и растительного происхождения. Синтетические полимеры получаются методами полимеризации и поликонденсации. Характерной особенностью ВМС является наличие длинных цепных молекул, образованных из многих звеньев одинакового или различного химического строения с молекулярным весом от нескольких тысяч до миллионов. Молекулы могут иметь линейную форму (полиэтилен, целлюлоза), разветвленную (крахмал) или спиральную форму (белки, нуклеиновые кислоты). Вдоль цепи атомы связаны ковалентными связями, а между цепями возникают межмолекулярные силы взаимодействия типа Вандерваальсовых сил, которые действуют в обычных жидкостях. Цепи могут быть связаны поперечными химическими связями (вулканизованный каучук) и тогда полимеры имеют строение пространственной сетки. Свойства полимера зависят от длины цепи, природы атомов, входящих в состав молекулы, распределения атомов в цепи, взаимодействия молекулы с окружающей средой, с соседними молекулами полимера или с молекулами жидкости в растворе. Звенья молекулярной цепи ВМС обладают способностью к ограниченному взаимному вращению вокруг валентных связей, это приводит к гибкости цепи и возможности изменения ее конфигурации. Одну из основных групп ВМС составляют каучукоподобные вещества или эластомеры, способные к большим обратимым (высокоэластическим) деформациям. Все они содержат длинные цепные молекулы, отличающиеся высокой гибкостью. Если [c.284]

    В случае сложных белков необходимо принимать специальные меры предосторожности, зависящие от природы небелковых веществ и от связи, которой эти последние соединены с белком. Изучая нуклеопротеиды, следует соблюдать осторожность для того, чтобы не утратить части нуклеиновой кислоты (если предметом исследования является не один белок, а весь нуклеопро-теид в целом) [25]. Оказалось, что липопротеиды чувствительны к замораживанию [26]. Простетические группы иных типов могу г подвергаться химическим [27] или ферментативным воздействиям [23], приводящим, с одной стороны, к изменению специфических биологических свойств сложных белков и, с другой стороны, к изменению растворимости или других свойств этих соединений. Так, известно, что изменение степени окисления простетической группы гемоглобина приводит к значительным изменениям его растворимости [27]. [c.11]

    Подобно околосуточному, циркааннуальный ритм - врожденное свойство, обеспечивающее выживание организмов в условиях меняющейся среды обитания. Они свойственны тем видам животных и растений, у которых продолжительность жизни не менее одного года. Помимо синхронизации биологических процессов с годовым циклом окружающей среды, согласования различных функций в организме или взаимодействия между особями популяции при размножении, стайном поведении и миграции, сезонные ритмы разобщают несовместимые во времени явления и биохимические реакции. На протяжении года обычно сменяются несколько сезонных состояний и сопутствующих им физиологических процессов. Так, у цветковых растений переход вегетационного периода в генеративный приводит к изменению характера формообразовательных процессов и усилению фотосинтеза, а зацветание сопровождается возрастанием уровня белка и нуклеиновых кислот в зоне созревания генеративных органов (Аксенова и др., 1973). У перелетных птиц в зимний период происходит увеличение массы и снижение локомоторной активности. Весеннему и осеннему миграционному состоянию соответствует повышение подвижности, а при наступлении размножения увеличиваются размеры половых желез, вырабатываются половые стероиды, усиливаются сперматогенез и овуляция. [c.39]

    В третьем томе показано, как благодаря совместному использованию различных экспе-рименталь.ных методов и теоретических подходов удается понять поведение и свойства биологических макромолекул. Главное внимание уделяется термодинамике и кинетике конформационных изменений и взаимодействию макромолекул с лигандами. При этом в случае необходимости описываются новые методы, а также подробно рассматривается история исследования некоторых вопросов. В гл. 15-17 обсуждаются проблемы взаимодействия молекул с лигандами, в гл. 18 и 19 излагаются теории и методы, используемые при изучении молекул, конформация которых носит статистический характер, гл. 20-24 посвящены конформационным изменениям в белках и нуклеиновых кислотах, гл. 25 — биологическим мембранам. [c.6]

    Условия сохранения активности вируссодержащего материала. Поскольку условия в клетке более благоприятны для вирусных частиц, чем те, воздействию которых они подвергаются на различных этапах концентрирования и очистки, необходимо определять условия, позволяющие сохранить максимум биологической активности вируса в процессе очистки (pH, солевой состав среды, температура и другие факторы). В процессе очистки может инактивироваться как новерхностная оболочка вируса, так и нуклеиновая кислота. Вирусняя нуклеиновая кислота не подвержена каким-либо воздействиям, пока зрелая вирус-пая частица интактна. Оболочка вируса надежно защищает нуклеиновую кислоту от нуклеаз. Она не только отвечает за нативность нуклеиновой кислоты, по и за процесс проникновения ее в клетку. Это специфическое свойство оболочки вирусов обусловлено наличием рецепторов — определенных химических группировок на поверхности вирусов, реагирующих с соответствующими участками поверхности клеток. Поэтому необходимо избегать какого-либо изменения поверхностной оболочки вирусов. Если поверхностная оболочка состоит главным образом из белка, то пригодны те способы сохранения активности вируса, которые эффективно применяются при выделении белков. [c.29]

    Под иммунитетом (от лат. ттип аз — освобождение, избавление от чего-либо) в биологии и медицине понимают комплекс реакций организма, направленных на сохранение его структурной и функциональной целостности при воздействии на организм генетически чужеродных веществ, как поступающих извне, так и образующихся внутри организма. Для поддержания и сохранения постоянства внутренней среды организма, так называемого гомеостаза, у позвоночных сформировалась специальная иммунная система, состоящая из лимфоидной ткани. К генетически чужеродным веществам относится огромное по разнообразию число биологически активных макромолекул, способных влиять на биологические процессы организма. Как правило, эти чужеродные вещества имеют органическое происхождение (белки, полисахариды и их комплексы, нуклеиновые кислоты) они получили название антигенов. Чужеродные вещества по своей структуре отличаются от собственных антигенных макромолекул, из которых состоит организм, так как последние генетически детерминированы, т.е. наследственно закреплены за каждым видом и индивидом. Именно в связи с этим чужеродные вещества, обладающие свойствами антигенов, способны нарушить в организме биохимические функции и процессы, приводящие к структурным и функциональным изменениям. [c.125]


Смотреть страницы где упоминается термин Изменения биологических свойств нуклеиновых кислот: [c.257]    [c.265]    [c.4]   
Смотреть главы в:

Радиационная химия органических соединений -> Изменения биологических свойств нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Биологические кислотами

Изменение свойств

Кислоты свойства

Нуклеиновые кислоты

Свойства биологические



© 2025 chem21.info Реклама на сайте