Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высшая заполненная

    Бериллий представляет собой более сложный пример металла, чем литий. В изолированном атоме бериллия имеется ровно столько электронов, чтобы полностью заполнить его Ь- и 2 -орбитали. Поэтому в металлическом бериллии такое количество электронов, что они полностью заполняют его 25-зону делокализованных орбиталей. Если бы 2р-зона не перекрывалась с 2 -зоной (рис. 14-26), бериллий не обладал бы хорошей электропроводностью, потому что для перемещения электронов в кристалле такого металла потребовалась бы энергия их возбуждения в 2р-зону, равная интервалу между 25- и 2р-зонами. Однако эти две зоны в кристалле бериллия перекрываются, и, таким образом, у него появляются незанятые делокализованные орбитали, расположенные на бесконечно малом расстоянии над высшими заполненными орбиталями. Благодаря этому бериллий является металлическим проводником. [c.628]


    Бензол должен поглошать свет с меньшей энергией, чем этилен, поскольку расстояние между высшим заполненным и низшим незаполненным я-уровнями в бензоле меньше (см. обсуждение энергетических уровней бензола в разд. 13-5, а уровней этилена в разд. 13-7). [c.526]

    Если неспаренный спин делокализован на высшей заполненной л-ор-битали или низшей свободной л -орбитали соединения (С Н5) Х (п = 1, [c.179]

    Поскольку составной частью прибора РФС является источник рентгеновского излучения, который ионизует образец, этим методом можно определять энергии связывания как валентных электронов, так и электронов оболочки. Обычно используют рентгеновское излучение Ка Mg и А1 с энергией соответственно 1253,6 и 1486,6 эВ. Методом РФС исследовали твердые вещества, газы, жидкости, растворы и замороженные растворы. В случае твердых веществ и замороженных растворов рассчитанные энергии связывания электронов относят к энергии уровня Ферми твердого вещества. Уровень Ферми соответствует высшему заполненному уровню электронного слоя структуры твердого вещества при О К. Уравнение сохранения энергии (16.23) преобразуется к виду [c.334]

    Признаки жестких кислот и оснований (табл. 8) 1) малый размер иона или молекулы 2) высокая электроотрицательность 3) локализованный заряд 4) низкая поляризуемость 5) низшие вакантные орбитали (НВО) кислот имеют высокую энергию 6) высшие заполненные орбитали (ВЗО) оснований имеют низкую энергию. [c.236]

    Как правило, существенно ближе, чем в случае двухцентровых молекулярных орбиталей, располагаются друг другу энергетические уровни системы многоцентровых орбиталей. Поэтому сокращается, по сравнению с соединениями с изолированными кратными связями, расстояние между высшим заполненным и низшим незаполненным уровнями энергии у соединений с системой сопряженных кратных связей, которые служат типичным примером молекул с многоцентровыми орбиталями. Такие соединения обладают максимумами поглощения в близкой ультрафиолетовой области, а при достаточно большом числе атомов, участвующих в формировании многоцентровых орбиталей, даже в видимой области. В последнем случае соединение оказывается окрашенным. Поэтому среди органических соединений с большим числом сопряженных кратных связей имеется много окрашенных в различные цвета. Целый ряд таких соединений используется в качестве органических красителей. [c.154]


    Рассмотрим применение этого подхода к оценке способности молекулярного водорода реагировать с молекулярным хлором и металлическим палладием. Низшая незаполненная молекулярная орбиталь молекулы Н2(а -) и высшие заполненные орбитали С1а (а-)и Р(1 могут быть представлены так .  [c.285]

    Как правило, существенно ближе, чем в случае двухцентровых молекулярных орбиталей, располагаются друг к другу энергетические уровни системы многоцентровых орбиталей. Поэтому сокращается, по сравнению с соединениями с изолированными кратными связями, расстояние между высшим заполненным и низшим незаполненным уровнями энергии у соединений с системой сопряженных кратных связей. Эти соединения служат типичным примером [c.175]

    Для нахождения потенциалов ионизации и сродства к электрону необходимо определить энергии положительного и отрицательного ионов. Для определения энергий синглетных и триплетных переходов необходимо рассчитать энергии синглетных и триплетных возбужденных состояний. Для этого составляются соответствующие детерминантные функции (или их линейные комбинации), и энергии состояний вычисляются по правилам расчета матричных элементов от детерминантных функций (3.30) —(3.33). Так, можно показать, что потенциал ионизации молекулы (в приближении замороженных орбиталей) равен 1 = Е+—Е ——е , где г — одноэлектронная энергия высшей заполненной молекулярной орбитали, полученная из уравнения Хартри—Фока. [c.67]

    N- -00 различие в энергиях между высшей заполненной МО ( =—) [c.231]

    Далее в методе МОХ предполагается, что можно пренебречь всеми взаимодействиями между несмежными атомами члены и отвечающие этим взаимодействиям, принимаются равными нулю. Величину аг считают равной потенциалу ионизации атомных орбиталей изолированного атома. Все члены вида и для взаимодействующих атомов считаются одинаковыми (что вполне верно лишь для симметричных молекул определенного типа). Интегралы перекрывания 5гг=1, а интегралы принимаются равными нулю, если г=ф5. Это значит, что перекрыванием орбиталей пренебрегают. Такое допущение справедливо, когда атомы г и з находятся далеко друг от друга, но, вообще говоря, оно довольно грубо. В итоге всех этих упрощений из детерминанта получают характеристическое уравнение, имеющее п корней, и каждый корень имеет вид = а-Ьт,р. Наименьшее значение корня отвечает основному состоянию остальные приблизительно представляют возбужденные состояния. Положительные значения т/ характерны для связывающих орбиталей, отрицательные — для разрыхляющих. Низшему энергетическому уровню соответствуют наибольшие положительные значения т,- (аир отрицательны). Значение кулоновского интеграла а принимается за начало отсчета. Первый потенциал ионизации пи-электронов приближенно характеризует энергию высшей заполненной молекулярной орбитали. [c.116]

    Наиболее длинноволновый максимум должен соответствовать переходу электрона с высшей заполненной атомной или молекулярной орбитали на низшую незаполненную орбиталь. В случае соединений с двухэлектронными связями электроны могут находиться на а- или я-орбиталях или в виде неподеленных пар электронов (/1-орбнтали). При этом наименьшей энергией обладают электроны на а-орбитали, затем электроны на я-орбитали (см. рис. 10). Вакантная разрыхляющая я -орбиталь находится ниже вакантной разрыхляющей о орбитали. Поэтому можно ожидать, что соединения, у которых все электроны внешнего электронного слоя участвуют в образовании а-связей, например насыщенные углеводороды, будут поглощать в дальней ультрафиолетовой области (так называемая вакуумная ультрафиолетовая область, где существенно поглощают кислород и азот, в связи с чем вся оптическая схема прибора должна находиться в вакууме). [c.36]

    Концепция граничных орбиталей. Оценки P. . особенно просты, если использовать возмущений теорию. В распространенном варианте теории возмущений энергия стабилизации представляется в виде суммы вкладов от взаимод. между мол. орбиталями реагентов. Наиб, вклад в сумму дают, как правило, взаимод. граничных орбиталей, т.е. высших заполненных электронами и низших незаполненных орбиталей согласно К. Фукуи (1952), существенны только эти вклады (см. Граничных орбиталей теория). Концепцию граничных орбиталей часто применяют в качестве основы для обсуждения P. . [c.214]

    Для молекул с сопряженными двойными связями [т. е. К(СН = СН)пН )] полосы поглощения сдвигаются в сторону более длинных волн по мере увеличения числа сопряженных двойных связей. Приближенный количественный расчет частот поглощения можно провести на основе модели свободного электрона для я-злектронов этих молекул. Энергия самого низкого электронного перехода определяется энергией, которая необходима для того, чтобы поднять электрон с высшего заполненного на низший незаполненный уровень. В системе с сопряженными двойными связями каждый атом углерода имеет три а-связи, лежащие в плоскости, а каждая 0-связь включает один внешний электрон этого атома. Сверху и снизу этой плоскости находятся я-орбитальные системы (см. рис. 14.7). Каждый атом углерода дает один электрон в такую л-сисгему эти электроны свободно движутся по всей области л-орбиталей, а не локализованы у данного атома. В модели свободного электрона допускается, что я-система является областью однородного потенциала и на концах системы потенциальная энергия резко возрастает до бесконечности (т. е. потенциальный прямоугольный ящик). Таким образом, можно вычислить уровни энергии Е я-электронов в случае одномерного движения частицы (разд. 12.12)  [c.483]


    Как УФС, так и РФС могут быть использованы для исследования валентных электронов в молекулах, и нас как раз интересует та информация, которую можно получить об этих электронах из фотоэлектронного спектра. На рис. 16.8 в качестве гфимера изображен спектр УФС газообразного азота. В случае источника Не(1). устанавливающего предел ионизации в 21,21 эВ, можно наблюдать три колебательно-структу-рированных фотоионизационных процесса ( 15,6, 17,0 и 18,18 эВ). Их можно приписать ионизации с трех высших заполненных молекулярных орбиталей Nj(2a -, я - и За -орбиталей). Отнесение пиков основано на наблюдаемой колебательной структуре. Следует отметить, что в спектре РФС имеются те же три линии (колебательная структура не видна из-за худшего разрешения) в дополнение к пику при 37,3 эВ для ионизации с 2а -уровня и единственному пику при 409,9 эВ для 1а - и 1а -уровней [27]. [c.336]

    N2) = 1,097632 А. Тройная связь в К, образована тремя парами электронов, занимаюшими МО разной симметрии ст-типа (одна пара) и я -типа, (две пары). Ее можно условно рассматривать как наложение неравноценных одной ст-идвух 71-связей и обозначить символом Суммарное электронное облако связи имеет цилиндрическую симметрию относительно межъядерной оси. Высокая стабильность молекулы азота обусловлена не только тройной связью, но и тем, что от высшей заполненной до низшей свободной орбитали расстояние велико, и возбуждение молекулы, ослабляющее связь, требует затраты весьма большой энергии.  [c.122]

    В молекуле Н2 или Т>2 высшая заполненная МО относится к типу Ог (о 15), а ближайшая к ней, низшая свободная МО — к типу а (а 1. ). Переход электрона с ВЗМО молекулы Нз на НСМО молекулы Вг (или наоборот) запрещен по симметрии. К тому же разность энергий между этими двумя орбиталями велика. Так что первая орбиталь подходящей симметрии 25 весьма отдалена от ВЗМО о Ь. Поэтому активадион- [c.145]

    Электронная плотность с высшей заполненной я-МО этилена переносится на вакантную (зр ) орбиталь металла (прямое донирова- [c.440]

    Деформация симметричной структуры Qt (см. рис. 12.5, б) приводит к появлению перекрывания между высшей заполненной и низшей свободной орбиталями. Из теории орбитальных взаимодействий (см. разд. 9.2) следует, что такое взаимодействие ведет к стабилизации связывающего и дестабилизации антисвязывающего уровней, т. е. к двухэлектронной стабилизации. Последняя достигает максимальной величины при некотором значении нежесткой координаты Qi=Qn, соответствующей ядерной конфигурации [c.467]

    Как отмечалось, энергетически наиболее важным является возникающее при искажении вдоль нежесткой координаты взаимодействие высшей заполненной и низшей свободаой МО (см. рис. 12.6). Возникающее при таком искажении перекрывание орбиталей [c.469]

    Будем полагать, что изменения в энергии высшей заполненной МО при пирамидализации плоской структуры определяют общую тенденцшо в изменении полной энергии молекулы, т. е. остальные энергетические уровни молекулы слабо реагируют на пирамидальную деформацию (сравните с диаграммой Уолша на рис. 10.4). Тогда из соотношения (12.15) следует, что стабилизация пирамидальной формы по отношению к плоской будет тем больше и, следовательно, тем выше будет инверсионный барьер, чем меньше энергетическая щель между граничными орбиталями в исходной плоской структуре. Из теории возмущений, например соотношений (9.7) и (9.17), вытекает, что с уменьшением электроотрица гельности центрального атома А в ряду соединений АХз энергетический уровень высшей связывающей МО будет повьш1аться, так как эла орбиталь (см. рис. 12.6) в Дз -форме молекул АХз полностью [c.470]

    Рис. 109 показывает построение таких орбиталей, а также классификацию их на симметричные S и антисимметричные относительно двух выбранных плоскостей симметрии. Сопоставляя МО системы сближенных молекул этилена с МО циклобутана, можно видеть, что высшая заполненная орбиталь реагентов не переходит в результате реакции в высшую заполненную орбиталь циклобутана (не коррелирует с ней). В то же время наблюдается пересечение уровней заполненных электронами МО реагентов с антисвязывающим уровнем циклобутана. Таким образом, при условии сохранения орбитальной симметрии в процессе согласованной химической реакции два заполненных электронами уровня системы реагирующих молекул этилена не могут переходить в два низших энергетических уровня циклобутана. Данная реакция считается запрещенной по симметрии в основном электронном состоянии. [c.318]

    Энергия электрона в поле Е = еУ, где V — падение потенциала Е, как известно, выражают в электронвольтах. Минимальное значение энергии разогнанного электрона, при которой он способен вызвать ионизацию, и есть энергия ионизации. Часто принимают ее равной энергии высшей заполненной атомной орбитали (ВЗАО). Заряд электрона постоянен, поэтому Е пропорциональна потенциалу ионизации. На этом основании потенциал ионизации (ПИ) во многих руководствах выражают в электронвольтах, что, конечно, не вполне корректно. [c.83]

    В методе граничных электронов принимается, что электро-фильный реагент прежде всего атакует те электроны, которые находятся в точках, где электронная плотность максимальна, и на высших заполненных орбитах. Поэтому для предсказания реакционной способности надо знать уровни энергии — молекулярные орбитали — молекулы и электронную плотность на каждом из них. Д. Робертс приводит пример анализа молекулы бутадиена, у которой электронная плотность для двух молекулярных орбиталей распределена следующим образом. В положениях 1 и 4 электронная плотность на высшей заполненной орбитали имеет наибольшее значение. Именно эти места молекулы бутадиена и будут подвергаться электрофильным атакам. Если реагент нуклеофилен, т. е. стремится присоединить протон, то он будет смещать пару электронов на самую низшую (из незанятых) молекулярную орбиталь. Его действию прежде всего подвергнутся электроны, занимающие такую молекулярную орбиталь, в которой атомные орбитали имеют наибольшее значение. Так как для бутадиена низшая незаполненная молекулярная орбиталь имеет вид 1 з = 0,6015 tIji—0,3717ф2— —0,3717 фз + 0,6015 ф4, то получается, что наибольшей реакционной способностью и по отношению к нуклеофильным атомам должны обладать положения 1—4 молекулы бутадиена. [c.126]

    Нижние возбужденные синглетные и триплетные состояния этена и его производных являются (л, я ) по характеру электрон переходит с высшей заполненной связывающей л-орбитали на нижнюю разрыхляющую л -орбиталь. Возможны как синглетное, так и триплетное (л, л ) состояния состояние высокой мультиплетности является более низким по энергии. Можно показать, как упоминалось в разд. 6.2, что состояние (я, л ) наиболее стабильно, когда молекула, выходя из плоской конфигурации основного состояния, поворачивается вокруг двойной связи на 90°. При этой перпендикулярной конфигурации перекрывание л- и л -орбиталей является минимальным, и оба состояния 51 и Т[ имеют наименьшие энергии при повороте на 90°. Очевидно, что, если алкен возбуждается в состояние (я, я ), он будет стремиться занять перпендикулярную конфигурацию. Последующая релаксация электронной энергии до основного состояния приводит к тому, что молекула снова становится ПЛОСКОЙ, причем образуются как цис-, так п транс-изомеры. Перпендикулярная конфигурация возбужденного состояния геометрически одна и та же независимо от того, произошла ли она от цис- или гронс-изомера молекулы в основ- [c.161]

    В результате перехода в электронно-возбужденное состояние изменяются окислительно-восстановительные свойства частиц. Возбуждение переводит один электрон с высшей заполненной молекулярной орбитали (HOMO) на вакантную орбиталь. Вакансия на HOMO облегчает получение частицей дополнительного электрона, т. е. делает ее более сильным окислителем. В результате этого, например, электронно-возбужденные кетоны могут отрывать атомы Н от атома углерода в углеводородах и спиртах  [c.158]

    В методе МО химическую стабильность характеризуют также энергии наивысшей заполненной (НЗ) и наинизшей незаполненной (НН) молекулярных орбиталей, обычно называемые энергиями НЗМО и ННМО. Если энергия НЗМО высока, то с этой орбитали легко удаляется электрон, и молекула легко окисляется. Если энергия ННМО низка, то эта орбиталь охотно принимает электроны от других соединений, и молекула легко восстанавливается. В свободных радикалах высшая заполненная орбиталь занята лишь наполовину и поэтому представляет собой как НЗМО, так и ННМО. При этом обязательно выполняется один из указанных выше критериев нестабильности. [c.127]

    Согласно П. л. т., изменение электронного распределение в комплексном соед. по сравнению со свободными 013оли-рованными) Центр, атомом и лигандами наиб, существенно для валентной оболочки центр, атома, высших заполненных и низших незаполненных (виртуальных) орбиталей лигандов именно из этих орбиталей конструируются мол. орбитали комплекса в целом. Остальные орбитали центр, атома и лигандов считаются неизменными. Эксперим. результаты, получаемые методами фотоэлектронной и рентгеновской спектроскопии, а также расчеты с помощью неэмпирических методов квантовой химии свидетельствуют о том, что потенциалы ионизации с внутр. орбиталей комплексов и электронные распределения зависят от природы лигандов. Однако при описании электронного строения валентной оболочки комплекса этой зависимостью можно пренебречь. П. л. т. наиб, плодотворна для анализа комплексных соед., образованных (1- и /-элементами, в частности переходными металлами, ддя к-рых характерна близость расположения атомных уровней типа 3 /, 4 и 4р. [c.65]


Смотреть страницы где упоминается термин Высшая заполненная: [c.178]    [c.179]    [c.80]    [c.80]    [c.181]    [c.279]    [c.376]    [c.379]    [c.379]    [c.498]    [c.279]    [c.376]    [c.379]    [c.379]    [c.498]    [c.70]    [c.47]    [c.326]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.450 ]




ПОИСК







© 2025 chem21.info Реклама на сайте