Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия из латексов структура

    Процессы образования трехмерных структур сопровождаются потемнением покрытия и возникновением в нем внутренних напряжений, приводящих к растрескиванию. Особенно быстро покрытия стареют при воздействии солнечного света. Покрытия на основе стирол-бутадиеновых латексов даже с антиоксидантами типа неозона Д (фенил-р-нафтиламина) или П-23 (1-окси-2.4,6-триизобутил-бензола) сравнительно быстро разрушаются при эксплуатации вне помещений. Поэтому первоначально краски на основе этих латексов использовались в основном для окраски внутри помещения. [c.253]


    В книге сделан систематизированный обзор работ, проведенных в области латексной полимеризации как в СССР, так и за рубежом. При этом наиболее подробно разбираются влияние способа проведения латексной полимеризации на свойства латекса, связь между растворимостью мономеров в воде и кинетикой полимеризации, возникновение в процессе полимеризации надмолекулярных структур и зависимость свойств образующихся покрытий от этих структур, влияние химического состава полимера (наличие функциональных групп) на механизм формирования покрытий из латексов. Отдельно рассматривается стабильность латексных систем, что имеет особенно важное значение для этих пленкообразователей. [c.6]

    К выводу о том, что капиллярные силы и силы поверхностного натяжения не являются основными факторами, определяющими свойства пленок, пришел С. С. Воюцкий [28, 29, 38]. В результате обобщения различных механизмов пленкообразования, рассмотренных в указанных теориях, он пришел к выводу, что процесс пленкообразования из дисперсий полимеров является многостадийным и связан с проявлением тех или иных сил на различных этапах пленкообразования. Решающее значение отводится последней стадии пленкообразования, когда из пленки полностью удаляется вода. Согласно этим представлениям процесс пленкообразования из латексов протекает в три стадии. На первой стадии происходит испарение воды и сближение латексных частиц до соприкосновения под действием сил поверхностного натяжения при этом предполагается, что каучуковые латексы могут деформироваться до исчезновения жидких прослоек. На второй стадии удаляется вода из пространства между частицами, что приводит к их деформированию. На этой стадии большое значение придается силам поверхностного натяжения и действию капиллярного давления. Это способствует уменьшению поверхности внутренних полостей между соприкасающимися частицами. Взаимодействие частиц происходит по участкам поверхности, не покрытым поверхностно-активным веществом. Наиболее важной стадией, определяющей структуру и свойства пленок, является третья, связанная с перераспределением поверхностно-активных веществ и коалесценцией частиц. Предполагается, что защитное вещество адсорбционного слоя уходит с поверхности. Свободные концы макромолекул могут при этом диффундировать через уплотненную поверхностную пленку сливаю- [c.198]


    Исследование структурных превращений при формировании покрытий из дисперсий обычно начинают с определения размера частиц в дисперсиях и пленках, а также плотности их упаковки. Методом электронной микроскопии с применением бромирования установлено, что размер частиц дисперсии изменяется в пределах 0,01— 0,3 мкм. При изучении структуры частиц в бутадиеновых латексах и его производных установлено [47], что наиболее крупные частицы обнаруживаются в разбавленных дисперсиях бутадиен-стирольных латексов, более мелкие — в латексах из бутадиенового каучука (рис. 4.1). Дисперсии латексов СКС-50 и СКН-40 отличаются от дисперсии латекса СКД-1 более неоднородной полидисперсной структурой. Наряду с частицами диаметром, составляющим десятые доли микрометра, обнаруживаются частицы диаметром 50 нм. В покрытиях, сформированных из этих латексов, сохраняется глобулярная структура (рис. 4.2). Однако размер частиц уменьшается в процессе сушки, особенно значительно (в 1,5—2 раза) в пленках из латекса СКС-50. Полидисперсность латексов СКС-50 и СКН-40 приводит к образованию неоднородной структуры с неплотной упаковкой латексных частиц, при которой отдельные крупные частицы разделены промежутками, соизмеримыми с их размером или [c.202]

    При исследовании структуры латексных пленок методом электронной микроскопии на различных стадиях пленкообразования установлено [47], что после удаления влаги латексные частицы не коалесцируют, четко сохраняя свою форму и границы раздела. Однако в процессе сушки размер их уменьшается, особенно значительно (до 30%) в пленках из латекса СКС-50. Период установления равновесных значений внутренних напряжений для указанных латексов различается более чем на порядок от этих же параметров покрытий из растворов этих же полимеров (рис. 4.8 и 4.9). [c.210]

Рис. 4.12. Структура покрытий из латекса СКС-50 через 1 (а) и 30 сут (б) формирования при 20 °С. Рис. 4.12. <a href="/info/875230">Структура покрытий</a> из латекса СКС-50 через 1 (а) и 30 сут (б) формирования при 20 °С.
Рис. 4.20. Структура покрытий из акриловых латексов МБМ-3 (а), МВМ-1,5 с- Рис. 4.20. <a href="/info/875230">Структура покрытий</a> из акриловых латексов МБМ-3 (а), МВМ-1,5 с-
Рис. 4.23. Структура частиц (а, б) и покрытий (в, г) из натурального латекса. (Образцы б и г подвергнуты кислородному травлению.) Рис. 4.23. <a href="/info/72924">Структура частиц</a> (а, б) и покрытий (в, г) из <a href="/info/22975">натурального латекса</a>. (Образцы б и г подвергнуты кислородному травлению.)
    Однако частицы дисперсий и латексов представляют собой сложные надмолекулярные образования, состоящие из более мелких структурных элементов, характерных для аморфных полимеров. После удаления влаги в пленках из дисперсий и латексов наблюдаются крупные частицы диаметром от 0,1 до 0,4 мкм. Свойства таких пленок нестабильны и изменяются во времени вследствие протекания релаксационных процессов. Это сопровождается перегруппировкой структурных элементов, входящих в состав частиц дисперсий, и образованием однородной глобулярной структуры. Незавершенность релаксационных процессов, протекающих самопроизвольно, обусловливает замедление процесса формирования покрытий со стабильными свойствами. В связи с этим были разработаны различные способы модификации, позволяющие ускорить процесс диспергирования крупных частиц на исходные структурные элементы. [c.123]

    Структура покрытий на основе исходных смесевых композиций нз латексов полимеров является неоднородной. Совмещение этих дисперсий в оптимальных условиях на уровне надмолекулярных структур, входящих в состав частиц, позволяет получать покрытия с однородной упорядоченной структурой. [c.128]

    Структура покрытий из аморфных полимеров. Наиболее характерные разновидности структуры покрытий, представляющих полимерные пленки аморфного строения, — глобулярная и фибриллярная. Глобулы образуются в результате превышения внутримолекулярного взаимодействия над межмолекулярным. Глобулярная структура (рис. 3.13, а) наблюдается у поливинилхлоридных, перхлорвиниловых, эпоксидных пленок и большинства покрытий, получаемых из поликонденсационных пленкообразователей и латексов эластомеров. Условиями для ее формирования являются высокая гибкость молекулярных цепей и наличие фазового перехода при пленкообразовании из-за присутствия не совместимых с полимером компонентов — растворителей, мономера и др. [c.63]


    Вследствие высокой конверсии и отсутствия регулятора полимер латекса имеет сетчатую структуру, характеризуется повышенной жесткостью и лишь ограниченно набухает в органических растворителях. Благодаря высокой адсорбционной насыщенности (до 80%) латекс устойчив к механическим воздействиям, изменению pH и введению наполнителей, что особенно важно для приготовления красок и композиций для покрытий. [c.409]

    Казалось бы, пленки с наилучшими свойствами можно получить при полной коалесценции первичных латексных частиц, т. е. при максимальной гомогенизации структуры пленок и покрытий. Однако, как это ни парадоксально на первый взгляд, для повышения прочности необходима определенная степень неоднородности структуры. Неоднородность структуры способствует перегруппировкам, сглаживающим пики внутренних перенапряжений. Слияние поверхностных слоев полимерных глобул латекса в процессе образования пленки протекает довольно легко, поэтому для получения плотной пленки не требуется полной коалесценции содержимого глобул. Высокая упорядоченность расположения латексных глобул приводит к образованию прочного армирующего каркаса, состоящего из твердых яд р латексных частиц. Такой каркас связан с эластичной дисперсионной средой (поверхностными слоями) аутогезионными силами. Прогрев пленок при температурах, превышающих температуру текучести полимера, приводит к коалесценции ядер латексных частиц, полной гомогенизации пленки и соответственно к уменьшению прочности, [c.69]

    Большое распространение получили В. с. и гл. обр. сополимер с винилхлоридом (мол. м. 60-80 тыс.). Введение звеньев винилхлорида в макромолекулу П. нарушает регулярность ее структуры и уменьшает способность к кристаллизации. B. ., содержащие менее 70% по массе В., рассматриваются как аморфные. Т-ра стеклования возрастает линейно с увеличением содержания винилхлорида. Зависимости т-ры вязкого течения и теплостойкости по Вика от состава сополимера носят экстремальный характер с минимумами, соответствующими содержанию винилхлорида 60% (для т-ры вязкого течения) н 40% (для т-ры размягчения). Сополимеры с 40-60% винилхлорида обладают макс. р-римостью в орг. р-рителях, но наиб, склонны к термич. деструкции с отщеплением H I. При дальнейшем увеличении содержания винилхлорида (до 75%) р-римость B. . резко уменьшается. Плотность В. с. уменьшается также с увеличением содержания винилхлорида. По прочностным и электрич. св-вам близки к П. Сополимеры жиро-, водо-, газонепроницаемы. Их производят в пром-сти в крупных масштабах. В водной суспензии получают сополимер с 15-25% винилхлорида его почти полностью перерабатывают в тонкую пленку для упаковки пищ. продуктов, выпускаемую под названиями повиден (СССР), сараи (США, Великобритания), курэхалон (Япония). Вследствие способности к кристаллизации пленка при нагревании дает значительную усадку, что используется для плотной и герметичной упаковки продуктов. B. . с 35% винилхлорида получают в водной эмульсин. Продукт 1>ции-латекс его используют для пропитки бумаги и картона, покрытия сыров иногда этот сополимер применяют для приготовления полимерцементов. [c.370]

    Получение в процессе сзгшки латексов частиц заданных дисперсного состава, формы и структуры особенно важно для ПВХ, перерабатываемого в изделия по пластизольной технологии, заключающейся в приготовлении из полимера, пластификатора, наполнителей, стабилизаторов и пигментов пластообразной массы, которую потом наносят на форму, ткань или какую-либо поверхность и подвергают термообработке. Происходящая при этом желатинизация пластизоля завершается получением нужного изделия или материала искусственная кожа, антиэрозионные и антикоррозионные покрытия, сапожки, перчатки, Детские игрушки, спортивный инвентарь и т.п. [c.141]

    Распространено мнение, что наилучшие свойства покрытий достигаются при полной коалесценции первичных латексных частиц, т. е. максимально возможной гомогенизации структуры пленок и покрытий. При изучении пленкообразо-вания латекса сополимера винилхлорида с винилиденхлоридом (ВХВД-65) было обнаружено, что при повышении температуры пленкообразования вплоть до Т тек сополимера (80° С) предел вынужденной эластичности пленок возрастает. Однако при нагревании сформированных пленок при температурах 100—140° С разрушаюш,ее напряжение пленок уменьшалось, несмотря на гомогенизацию структуры пленки. При этом термодеструкция сополимера ВХВД-65 практически отсутствовала. Естественно, что различия в прочности пленок обусловлены структурными изменениями полимера при дополнительном прогреве. Если основным структурным элементом пленок, прогретых при 80° С, является первичная латексная частица (1>ср = 760А ),то для пленок, прогретых при 140° С, характерна однородная бесструктурная поверхность с дискретными включениями единичных глобул. Пленки с глобулярной структурой характеризуются большим модулем упругости и низким относительным удлинением (50—80%) при разрыве, тогда как после гомогенизации разрушающее напряжение уменьшается, а относительное удлинение при разрыве возрастает до 800% [56]. [c.67]

    Для получения монолитной пленки из дисперсии пластомеров необходимо сплавление рыхлого, непрочного слоя, образовавшегося после испарения воды. Однако в ряде случаев нагревание, необходимое для такого сплавления или для вулканизации эластомеров, недопустимо (например, в случаях покрытия на пищевых продуктах). Для получения дисперсий, образующих достаточно прочные и эластичные покрытия при комнатной температуре, используют композиции сополимеров с низкой температурой стеклования (например, у сополимера винилхлорида и винилиденхлорида с соотношением 66 34 = =7°С) и насыщенных эластомеров. Состав композиции при совместной коалесценции определяет структуру и свойства формируемого покрытия. Но более целесообразным является применение сополимеров, например винилиденхлорида и 2-этилгексилакрилата в сотношении 60 40. При содержании сухого остатка в латексе выше 40% образуется однородная пленка с достаточной прочностью и высокой эластичностью. Вязкость дисперсии регулируется незначительными добавками аль-гината натрия (0,5—1%) или поливинилового спирта (1—3%). Будучи водорастворимыми, эти полимеры повышают водо- и паропроницаемость готовых пленок, не влияя на их механические свойства. [c.180]

    Нитрование оксидами азота характеризуется отрицательной энергией активации. При взаимодействии с азотной кислотой и другими нитрующими агентами происходит деструкция полидиенов. Нитрованные каучуки содержат нитрогруппы, карбонильные, карбоксильные и гидроксильные группы, а такн е циклические структуры. Как правило, они являются твердыми порошкообразными веществами. Полифункциональные нитроолигомеры вызывают сшивание каучуков при нагревании, приводя к повышению прочности наполненных резин. Они могут употребляться как добавки в смеси при изготовлении лаковых и грунтовых покрытий для повышения ударопрочности полистирола и поливинилхлорида, дополнительные стабилизаторы латексов, как ингибиторы коррозии металлов. [c.204]

    Введение электропроводящих наполнителей (особенно порошков металлов) в большом количестве значительно ухудшает физикомеханические свойства пластмасс. Поэтому большое значение имеет повышение электропроводности при минимальном содержании наполнителя, т. е. оптимизация структуры электропроводных материалов. Это достигается введенпем сажи в латекс каучука [328] использования магнитного поля для ориентации частиц ферромагнитного напо.лнителя [329, 330] покрытия частиц полимера частицами сажи и последующего смешивания с полимером, содержащим летучую смазку [331] подбора полимерного связующего, препятствующего образованию крупных ассоциатов сажи [332] использования вместо сажи углеродной ткани, обработанной в метане или других восстановительных газах при 1700—2200 °С [333] применения графита, предварительно обработанного хлоридом железа (П1) [334] введения ПАВ в саженаполненные полимеры [40, 335] и т. п. [c.176]

    Как было указано выше, проводимость полимеров значительно возрастает при содержании небольшого количества высокодисперсной сажи. При этом сохраняются механические свойства исходного полимера. В большинстве же случаев приходится вводить большое количество электропроводящих наполнителей, что заметно ухудшает физико-механические свойства пластмасс. Поэтому большое значение имеет повышение проводимости при минимальном содержании наполнителя, т. е. оптимизация структуры электропроводящих композиций. Приведенные выше данные о повышении проводимости саженаполненных композиций с помощью эластомеров можно рассматривать как один из вариантов такой оптимизации. Это также достигается введением сажи в латекс каучука [230] использованием магнитного поля для ориентации частиц ферромагнитного наполнителя [231— 233] покрытием частиц полимера частицами сажи и последующим смешиванием с полимером, содержащим летучую смазку [234] подбором полимерного связующего, препятствующего образованию крупных ассоциатов сажи [235] использованием вместо сажи углеродной ткани, обработанной в метане или других восстановительных газах при 1700—2200 °С [236] применением графита, предварительно обработанного хлоридом железа (П1) [237] введением в саженаполненные полимеры ПАВ [127, 238], альбихтола [239], меламина [240], небольших количеств полимеров, переходящих в вязкотекучее состояние при более высокой температуре, чем основной полимер [241] и т.п. Проводимость полимерных композиций, содержащих сажу, [c.173]

    Обычно в лакокрасочной промышленности в латексы вводят поверхностно-активные вещества для увеличения агрега-тивной устойчивости набухших частиц, которые после покрытия защитной оболочкой становятся похожими на капельки эмульсии (см. рис. 2,а). Они с более прочной оболочкой подобны частицам свежеполученного естественного латекса [569], при концентрировании которого центрифугированием или другим путем возникают также периодические структуры. [c.132]

    При увеличении глубины пропитки бумаги латексом уменьшается скорость протекания релаксационных процессав, способствуя нарастанию внутренних напряжений. Эти данные хорошо согласуются с представлениями Лыкова [43] о механизме возникновения внутренних напряжений в коллоидных капиллярно-пористых материалах в процессе сушки, согласно которым величина внутренних напряжений пропорциональна градиенту влагосодержания между центральными и поверхностными слоями материалов. Увеличение глубины пропитки латексом способствует неравномерному распределению влаги в процессе сушки и увеличению градиента влагосодержания. Структура подложки оказывает существенное влияние на структуру латексных покрытий. На рис. 1.20 при- [c.36]

    Характер влияния функциональных групп на внутренние напряжения и другие физико-механичесние свойства пленок зависит также от химического состава и жесткости основной цепи. В работах [61, 62] показано, что для латексов на основе сополимера бутилакрилата и бутилметакрилата введение тех же функциональных групп по-иному сказывается на механических свойствах покрытий (табл. 2.8). В этом случае наибольшие внутренние напряжения возникают в покрытиях из сополимера с амидными группами эти покрытия отличаются также большей адгезией. В то же время большая прочность обнаруживается при введении в систему карбоксильных групп. Иной характер изменения свойств покрытий из этих систем связан со специфическими особенностями структурообразования. Более низкая прочность пленок из латексов с амидными и нитрильными группами для этих латексов связана с формированием неоднородной глобулярной структуры. В то же время структура латексных частиц из полимера с карбоксильными группами состоит из развернутых молекул и не выявляется даже при длительном кислородном травлении образцов. Внутренние напряжения в покрытиях из эластомеров, как и из олигомеров, полимери-зующихся с образованием пространственно-сетчатой структуры, коррелируют с изменением адгезионной прочности покрытий в зависимости от природы функциональных групп. Это свидетельствует о том, что адгезионное взаимодействие для эластомерных покрытий также вносит решающий вклад в торможение релаксационных процессов при их формировании. [c.72]

    Значительные внутренние напряжения и продолжительность формирования покрытий из дисперсий полимеров ухудщают качество материалов из-за нестабильности свойств, а также вызывают самопроизвольное деформирование и закручивание их в процессе производства. Синтез латексов с упорядоченной структурой латексных частиц позволяет улучщить физико-механические свойства и сократить период формирования пленок. Получение латексных частиц с упорядоченной структурой может быть осуществлено путем изменения химического состава и концентрации функцио- [c.212]

    Значительные различия в механизме формирования и свойствах покрытий и пленок из латексов акриловых сополимеров различного химического состава обусловлены специфическими особенностями структуры латексных частиц и распределением полярных групп на их поверхности. Так, например, покрытия из латекса сополимера метилакрилата, бутилакрилата и метакриловой кислоты МБМ-ЗС характеризуются глобулярной структурой с диаметром глобул около 30 нм (рис. 4.20). В покрытиях из латекса сополимера ме- тилакрилата с винилацетатом и метакриловой кислотой МВМ-1,5С наблюдается неоднородная структура из анизодиаметричных структурных элементов. Пленки из латекса сополимера БМ отличаются [c.214]

    При подборе композиций на основе полихлорвинилового латекса необходимо руководствоваться величиной вязкости и по-г-ерхностиого натяжения системы. 1 ак, например, в зависимости пт структуры и пористости ткани для покрытия ее требуются латексы с теми или иными показателями вязкости и поверхностного натяжения. Полихлорвиниловый латекс должен обладать следующими свойствами  [c.143]

    Именно с этой целью для лакокрасочных материалов горячей сун1-ки рекомендуется стирол-бутадиеновая дисперсия доу-латекс 566 (Доу Хемикл Ко). Нагревание и действие определенных катализаторов приводят к образованию пленок с пространственной структурой, в результате чего улучшается адгезия, повышаются плотность и твердость покрытия, увеличивается срок его службы, а также устойчивость к воздействию воды, химических реагентов и уайт-спирита. [c.62]

    Свойства покрытий. На свойства покрытий влияют состав композиций и условия пленкообразования. Так, пленки, полученные из поливинилацетатного латекса при комнатной температуре, характеризуются наличием нескоалесцированных глобул они имеют большое водопоглощение и относительно низкие значения прочности при растяжении. В отличие от них пленкам, полученным при 130 °С, свойственна однородная структура (рис. 3.6) и соответственно значительно более высокие прочностные показатели и лучшая водостойкость. [c.48]

    Весьма перспективно смешение дисперсий полимеров, один из которых содержит реакционноспособные группы. В этом случае за счет реакционноспособного компонента в пленке реализуется пространственно-сшитая структура, включающая частицы инертного компонента и получается покрытие с оптимальным комплексом свойств. В частности, на основе смесей дисперсии поливинилацетата и латекса сополимера, содержащего 75% этилакрилата, 20% метилметакри--лата, 2% метакриловой кислоты и 3% УУ-(Р-метакрил-лмидоэтил)-Л ,Л -этиленмочевины, получены покрытия, отверждающиеся при 110°С в течение 10 мин и обладающие хорошей адгезией [162]. Смеси латекса сополимера 40 ч. (масс.) глицидилакрилата, 335 ч. [c.162]

    Важнейшее место в производстве пластических масс и синтетических каучуков-принадлежит стиролу, обладающему высокой способностью к полимеризации. Основными производными стирола являются полистирол, смолы АБС (акрилонитрилбутадиен-стирольные), бутадиен-стирольные каучуки и латексы, ненасыщенные полиэфиры и прочие продукты. Полистирол занимает в структуре потребления стирола 2/3. В свою очередь, полисти-рольные пластики используются для производства деталей холодильников, кондиционеров, радио-, телевизионной и осветительной аппаратуры, облицовочной плитки, бытовых товаров, тары и упаковки, игрушек, защитных покрытий, труб и других видов продукции. [c.223]


Смотреть страницы где упоминается термин Покрытия из латексов структура: [c.209]    [c.449]    [c.119]    [c.124]    [c.45]    [c.70]    [c.34]    [c.37]    [c.71]    [c.203]    [c.209]    [c.213]    [c.214]    [c.215]    [c.122]    [c.126]    [c.40]    [c.61]    [c.139]    [c.155]    [c.149]   
Структура и свойства полимерных покрытий (1982) -- [ c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Латексы



© 2025 chem21.info Реклама на сайте