Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий электронное строение

    Это расположение элемен- тов хорошо согласуется с их электронным строением и по- зволяет рассматривать торий, протактиний и уран как эле- . менты, проявляющие сходство уг > [c.431]

    По своему электронному строению (табл. 9) торий и протактиний, обладающие недостроенными уровнями 5 и 6, напоминают гафний и тантал. Можно было бы думать, что трансурановые эле- [c.95]

    Такое, казалось бы, необычное строение 6-го периода будет объяснено при изучении электронного строения этих элементов. Аналогичное семейство элементов находится и в 10-м ряду 7-го периода. В клетке, где находится актиний, помещен ряд элементов от тория до менделевия (последний из известных нам искусственно полученных трансурановых элементов).  [c.82]


    Введение в ионообменную хроматографическую систему комплексообразующих реагентов кардинально расширило возможности метода. В образовании комплексных соединений проявляются тонкие особенности электронного строения атомов элементов, более полно выявляется индивидуальность их свойств, поэтому резко повысилась степень однократного разделения смесей, во многом определяющая эффективность хроматографического опыта в целом. Образование многими металлами отрицательно заряженных комплексов не только позволило облегчить перемещение многозарядных катионов по слою катионита, но и широко использовать аниониты. Не случайно поэтому именно хроматографические системы с комплексообразующими реагентами привлекли особое внимание как специалистов в области комплексных соединений [7], так и аналитиков. В качестве иллюстрации достаточно упомянуть хроматографическое разделение смесей, включающих цинк, кадмий, индий, галлий, титан, цирконий, торий [8—И]. Заслуживают также упоминания систематические исследования хроматографических свойств практически всех метал,лов в растворах фто- [c.231]

    Размещению известных Менделееву европия, гадолиния, тербия, гольмия, эрбия, тулия в девятом ряду препятствовало полное несходство их с серебром, кадмием, индием, оловом, сурьмой, теллуром и йодом, под которыми были оставлены места (см. табл. 2). Не зная электронного строения элементов, нельзя было определить, что лантаноиды не являются аналогами элементов главных подгрупп и d-переходных металлов, а образуют самостоятельные третьи подгруппы /-переходных металлов. Открытие лютеция и гафния привело к перемещению иттербия во Пс подгруппу, а церия из подгруппы титана в IV подгруппу. Совершенно так же открытие советским ученым Н. И. Флеровым с сотрудниками в 1964 г. элемента № 104, являющегося аналогом гафния, исключает возможность размещения тория, протактиния и урана в подгруппах d-переходных металлов под гафнием, танталом и вольфрамом, поскольку нельзя в клетку, где поме- [c.24]

    Рассмотрим смещения лантаноидов и актиноидов, вытекающие из электронного строения. Уровни 5a и 4/ у гадолиния и лютеция оказываются настолько близкими, что ввиду устойчивости f- и / -конфигу-раций один из электронов переходит на d-уровень, вследствие чего эти элементы имеют внешнюю электронную конфигурацию, идентичную конфигурации лантана (dV). Еще более сильное смещение d- и /-уровней у актиноидов приводит к переходу электронов с 5/- на Bd-уровни у тория, протактиния, урана, нептуния, кюрия, берклия и лоуренсия. Наличие d-оболочек несколько сближает эти элементы с переходными металлами. С другой стороны, наличие двух электронов на внешней s-подоболочке, отсутствие электронов на d-уровнях и образование /-электронами устойчивых f- и / -конфигураций сближает европий, иттербий, америций, нобелий со щелочноземельными металлами. Дифференциация строения и свойств лантаноидов и актиноидов должна основываться на различии строения их /-оболочек. [c.40]


    Электронное строение/-переходных металлов (см. табл. 3 и 9) характеризуется тем, что их ионы имеют внешнюю оболочку с ортогональным секстетом р-орбиталей. Над этой оболочкой у свободных атомов находятся два электрона на -уровне, а у лантана, гадолиния, лютеция, актиния, протактиния, урана, нептуния, кюрия, берклия и лоуренсия — еще один электрон на -уровне. Торий имеет четыре внешних валентных электрона ( 5 ). Под оболочкой р у лантаноидов п актиноидов располагается [c.235]

    Радиоактивные и нерадиоактивные изотопы данного элемента имеют одинаковое строение электронной оболочки, вследствие этого они химически почти идентичны. Их физико-химические свойства могут несколько различаться вследствие разницы масс изотопов. Радиоактивные вещества практически отличаются от нерадиоактивных только ядерным излучением. В радиоактивном веществе, в котором данный элемент находится в виде только радиоактивного изотопа, или в его концентрированном растворе происходят химические процессы под действием собственного излучения, что усложняет их химию и создает новую, еще не разработанную область радиохимии. Исключение составляют долгоживущие изотопы урана и тория. [c.11]

    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Строение электронных оболочек атомов и ионов позволяет объяснить и предсказать действия многих реагентов. Если рассмотреть деление периодической системы на четыре блока (s-блок, р-блок, d-блок и f-блок), элементы -блока и /-блока образуют комплексные соединения. Для них также характерно взаимодействие с органическими реагентами и образование большого числа окрашенных соединений. Цирконий и торий (d- и /-блок) образуют с арсеназо 1П устойчивые комплексные соединения зеленого цвета. Магний и алюминий (s-и р-блок) не взаимодействуют с арсеназо П1. В s-блоке расположены элементы, в которых строится s-оболочка над электронной структурой инертного газа — это щелочные и щелочноземельные элементы. Элементы s-блока [c.283]

    Протактиний по строению электронных оболочек его атомов в большей степени, чем торий, можно отнести к актиноидам. [c.449]

    Первыми наблюдавшимися примерами превращения элементов были а- и -распады в радиоактивных рядах урана, тория и актиния. Поскольку речь идет о превращении элементов, ясно, что при этом распаде изменяется не только строение электронных оболочек, но и (в первую очередь) строение атомных ядер. [c.45]

    На основании всего сказанного, а также спектроскопии урана, тория, америция можно сделать вывод о строении электронных оболочек атомов актинидов, сопоставив это строение с данными для лантанидов. [c.159]

    По свойствам и строению электронных оболочек все трансурановые элементы вместе с актинием, торием, ураном сходны с редкоземельными элементами. В периодической системе они занимают одну клетку с актинием — отсюда их название актиниды. [c.93]

    Ярко выраженная поливалентность актиноидов отражает специфику электронного строения их атомов — близость энергетических состояний 5/-, 6d-, 7s- и 7р-подуровней, большую пространственную протяженность 5/-орбиталей по сравнению с 4/-и меньшую эф( )ективность экранирования внешних электронов. Только по мере заполнения 5/-орбиталей электронные конфигурации атомов несколько стабилизируются и элементы подсемейства берклия (Вк—Lr) проявляют более устойчивые низкие степени окисления +3 и +2. Для тория, протактиния и урана преобладают степени окисления -f4, -f5 и +6 соответственно, поэтому соединения этих элементов до некоторой степени напоминают соединения гафния, тантала и вольфрама. В настоящее время принадлежность их к семейству /-элементов (актиноидов) не вызывает сомнений. U, Np, Pu и Ат образуют группу уранидов, аналогично подгруппе церия в ряду лантаноидов, а элементы Ст—Lr образуют группу кюридов. [c.360]

    ПВ—У1В). Действительно, каждому из них свойственны высшие степени окисления, отвечающ,ие номеру группы (АсгОз, ТЬОг, РааОб, иОа). Синтезированные тяжелые элементы (Ыр, Ри и др.) называли трансурановыми и выносили за пределы графической формы периодической системы (подобно лантаноидам). Это выглядело несколько искусственным, так как не было обосновано с точки зрения электронного строения атома. Было очевидно, что в 7-м периоде должно сущ,ествовать семейство из 14 5/-элементов, подобное семейству лантаноидов, однако не было ясно, с какого именно элемента происходит заполнение 5/-оболочки. В 1942 г. Г. Сиборг высказал актиноидную гипотезу, согласно которой заполнение 5/-оболочки возможно уже у элементов, следующих за актинием (начиная с тория — № 90). [c.433]


    Анализ прочности водородной связи с водой различных соединений позволяет утверждать, что величина энергии Н-связи чувствительна к электронному строению взаимодействующего с водой соединения. Она реагирует на изменение степени гибридизации орбиталей протоноакцеп-тора, на присутствие ароматических колец, изменение числа электронофильных атомов кислорода эфирных групп, следовательно, является показателем электронодонорной способности функциональных групп и соединений в целом. В связи с этим представляет интерес проведение сопоставления энергии Н-связи с другими параметрами, также характеризующими электронодонорные свойства. Одной из главных характеристик молекулы, определяющих особенности ее строения и многие свойства соединений, является длина связей и энергия химических связей [150]. Результаты сопоставления величин энергии водородных связей с водой типа А—В. .. Н—О—Н и энергии [c.40]

    Исследованию связи между константами сверхтонкой структуры Л и электронным строением радикалов посвя щен ряд монографий [1,7—14], поэтому здесь мы огра ничились изложением лишь тех сведений, которые необ ходимы для анализа формы спектров. Соотношения, ко торые понадобятся в дальнейшем, собраны для удобства в табл. 1.1. [c.19]

    Подгруппа титана. Электронное строение атомов элементов подгруппы титапа (титап, цирконий, гафний и торий) характеризуется наличием восьми электронов на -орбите. У тория, вероятио, правильнее предполагать существование ( /-структуры. Однако, по входя глубоко в рассмотрение правильности представлений о группе актинидов, в плане данной статьи удобнее рассматривать торий как член подгруппы титана, поскольку но своим химическим свойствам он во многом близок к цирконию и гафнию. В свете представлений об электронных оболочках атомов этот факт отвечает тому, что энергии s d - и /-электроиов весьма близки между собой, вследствие чего цирконий, гафний и торий во всех своих соединениях яв-.1ЯЮТСЯ, как правило, четырехвалептпыми. Лишь титан можно восстановить до трех- и даже до двухвалентного состояния. Ионные радиусы элементов подгруппы титана, как это видно из приводимых ниже данных, закономерно возрастают от титана к торию  [c.185]

    Легко видеть, что размещение лантаноидов и актиноидов по группам периодической системы по сумме электронов вне заполненных оболочек и стабильных конфигураций 4/ и 5/ является нонвариантным решением лантаноидной и актиноидной проблем. Так как именно периодическое повторение электронного строения атомов при возрастании атомного номера является единственной причиной периодического повторения свойств и, следовательно, сущностью периодического закона, то указанное размещение лантаноидов и актиноидов по группам 6-го и 7-го периодов исключает возможность иных решений, будь то обособление этих элементов в два семейства, выносимых под таблицу, или же сохранение части актиноидов до тория, протактиния, урана и т. д. в 7-м периоде с вынесением другой их части вниз в качестве трансториевых, транспротактиниевых, трансурановых и т. д. элементов. Это решение, полученное на основе современных данных атомной физики о строении электронных оболочек, совершенно точно соответствует идеям Менделеева. [c.20]

    Кристаллические структуры актиноидов (см. табл. 39) также тесно связаны с особенностями их электронного строения. Актиний с внешней оболочкой свободного атома s p d s , теряя три валентных электрона, в металлическом состоянии образует ионы Ас с внешней оболочкой р . В результате взаимодействия с электронным газом эти ионы сближаются, но при низких температурах их р-орбитали не перекрываются и вследствие нсевдосферической симметрии ионов упаковываются в плотную гранецентрированную решетку с небольшой тетрагональностью. При повышении температуры вследствие развития р-орбиталей может возникнуть обменное взаимодействие, результатом чего может быть появление объемноцентрированной кубической Р-модификации. Торий имеет внешнюю конфигурацию p d s и в металлическом состоянии четырехвалентен. Его ионы (Th ) имеют внешнюю ортогональную р -оболочку. При низких температурах при сближении ионов перекрытия р-орбиталей не происходит, ионы ведут себя как псевдосферические и в результате ненаправленного взаимодействия с электронным газом упаковываются в плотную кубическую структуру а-тория. С повышением температуры происходит увеличение энергии электронов р -оболочки, р-орбитали вытягиваются и перекрываются, начиная с температуры 1690°. Выше этой температуры возникают ортогонально направленные обменные связи, в результате чего появляется объемноцентрированная кубическая структура р-тория, устойчивая до температуры плавления. Протактиний в связи с наличием внешней оболочки у его иона и устойчивым валентным состоянием Ра , обусловливающим более высокую электронную концентрацию Ъэл1атом), может иметь подобно ванадию, ниобию и танталу и по тем же причинам объемноцентрированную кубическую структуру. Фактически было найдено, что при 20° протактиний имеет ОН, тетрагональную решетку. Тетрагональность может быть обусловлена загрязнениями образца. [c.239]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    Если под полупроводниками подразумевать вещества, электропроводность которых существенно зависит от воздействия внешних факторов (температура, свет и т. д.), то можно считать, что большинство твердых тел, жидкостей и даже газов обладает свойствами полупроводников. Однако в производстве полупроводниковых приборов используется пока что ограниченное число материалов. Все они являются твердыми телами с электронной электропроводностью и имеют, как правило, кристаллическое строение. Поэтому в дальнейшем под понятием полупроводник будут подразумеваться только твердые тела, обладающие электронной электропроводностью, величина удельной проводимости ко-торых находится в пределах 10 —10  [c.11]

    В последнее время считают, что три элемента, стояпще за актинием, т. е. элементы с порядковыми номерами от 90 до 92, не соответствуют по своему строению трем первым элементам семейства лантанидов, а скорее построены аналогично элементам IV—VI побочных подгрупп. Типичная для лантанидов конфигурация электронов проявляется в семействе актинидов, по-видимому, только после нептуния 2=93). Возможно, что четвертый и следующие элементы семейства актинидов по своему строению похожи на четвертый и следующие элементы семейства лантанидов. (Подробнее об этом см. т. И, гл. 14. Ср. также табл. II приложения.) Если эти предположения, установленные на основании данных магнитных измерений, правильны, то элементы торий, протактиний и уран следует поместить в побочные подгруппы IV—VI групп не только по их химическому поведению, но и на основании строения их атомов. [c.22]

    Развитие учения об атомах не прекратилось на строении электронных оболочек. Оно постепенно охватило и строение атомных ядер, которые оказались весьма сложными системами. Толчком к развитию учения о строении атомных ядер было открытие в 1896 г. Беккерелем явления радиоактивности, заключающегося в способности атомов урана самопроизвольно испускать лучи, составными частями которых были поток ядер атомов гелия (а-лучи), поток электронов (р-лучи), поток фотонов (у-лучя). Явление радиоактивности было обнаружено у тория, а также у некоторых вновь открытых элементов (полония, радия, актиния и протактиния). Это явление сопровождается непрерывным выделением тепла (1 г радия выделяет 136 кал1час). В отличие от химических реакций, на процесс радиоактивности не влияют ни температура, ни давление, ни химические реагенты. [c.18]

    Открытие в 1930 г. двух дополняющих друг друга окислителей, способных расщеплять количественно С—С-связи 1, 2-гликолей, имеет выдающееся значение для выяснения строения органических соединений всех типов. Первый из них — тетраацетат свинца — следует использовать в безводной среде в растворе в ледяной уксусной кислоте или в бензоле, причем необходимо помнить, что в горячем растворе он является также сильным общим окислителем для некоторых других органических групп второй — йодная кислота — используется в буферных водных растворах и поэтому особенно часто применяется для расщепления углеводов и водорастворимых биологически важных веществ. Эти два реагента могут расщеплять даже С—С-связи первичных и вторичных гликолей, например НО—СНг—СНг—ОН, одиако недавно было найдено, что и все окислители моноатом-ных спиртов могут вызывать С—С-расщепление дитретичных спиртов, например пинакона, в то время как первичные и вто ричные 1,2-гликоли окисляются этими окислителями преиму щественно по типу С—Н-расщепления. В следующих разделах показано, как слабы структурные и электронные различия, ко торые приводят к такой разнице в отношении путей окислитель ного действия. [c.88]

    Одинаковое строение не только наружного, но и предпослед- него электронного слоя атомов всех щелочных металлов, кроме лития, обусловливает большое сходство свойств этих элементов, В то же время увеличение заряда ядра и общего числа электро- нов в атоме при переходе сверху вниз по подгруппе создает неко- торые различия в их свойствах. Как и в других группах, эти различия проявляются главным образом в увеличении легкости отдачи валентных электронов и усилении металлических свойств с возрастанием порядкового номера. [c.562]

    Предположение о том, что седьмой период системы Менделеева построен подобно шестому, сводилось, следовательно, к тому, что и в седьмом периоде должна существовать группа из 14 элементов, в атомах которых будет происходить заполнение 5/-оболочки. Однако предсказать заранее, с какого именно элемента начнется заполнение /-мест пятой оболочки, было труд1ю, ибо для этого надо было точно рассчитать, в каких атомах прочнее связаны 5/-, а в каких бй-электроны. Разные авторы пришли к выводу, что наслоение 5/-электронов должно начаться с элементов от № 90 (торий) до № 96. Решить окончательно вопрос о строении седьмого периода системы Менделеева мог только опыт. Пока заурановые элементы не были синтезированы, определенных выводов из опытов нельзя было сделать. Хотя основными валентностями тория, протактиния и урана являются валентности 4, 5 и б, сделать отсюда вывод о том, что эти элементы являются аналогами гафния, тантала и вольфрама, было бы еще преждевременным. [c.150]

    Как указано в табл. 6, четырнадцать 4/-элекТроноЕ добавляются в группе лантанидов, начиная с церия (2 = 58) и кончая лютецием (2 = 71) а в группе актинидов четырнадцать 5/ электронов также добавляются, начиная с тория (2 = 90) и кончая лоуренсием (2=103). В случае актиния, тория, урана и америция сведения строении оболочек были получены из анализа сиектро скопических данных, полученных при измерении эмиссионных линий нейтральных и заряженных газообразных атомов. Представление о строении оболочек протакти- [c.117]


Смотреть страницы где упоминается термин Торий электронное строение: [c.505]    [c.505]    [c.142]    [c.161]    [c.440]    [c.80]    [c.287]    [c.132]    [c.132]    [c.152]    [c.93]    [c.65]    [c.82]    [c.150]   
Ионообменная технология (1959) -- [ c.442 ]

Ионообменная технология (1959) -- [ c.442 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.91 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Тории строение электронных слоев

Торий, атомный и катионный радиусы электронное строение

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте