Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства волокон и нитей растяжение

Рис. 94. Изменение угла наклона касательной к кривой растяжения в зависимости от свойств нити или волокна. Рис. 94. Изменение угла наклона касательной к <a href="/info/22959">кривой растяжения</a> в зависимости от <a href="/info/943856">свойств нити</a> или волокна.

    В связи с созданием конструкционных углепластиков, для изготовления которых применяется высокопрочное высокомодульное углеродное волокно, возникла необходимость определения механических свойств элементарных нитей. Для волокон этого типа определяются прочность и модуль упругости при растяжении, изгибе и сдвиге и разрывное удлинение. Механические свойства при разных условиях нагружения особенно важны для анизотропных материалов, к которым относятся высокопрочные волокна  [c.263]

    Эластические свойства. Волокно нейлон замечательно не только высоким значением разрывного удлинения (22%), но и высокой эластичностью. Так, если волокно растянуть на 8% от исходной длины, то после снятия нагрузки удлинение его полностью исчезает. Таким образом, эластичность нейлона при растяжении на 8% составляет 100%. При растяжении на 16% обратимость деформации составляет 91 %. Такая высокая эластичность волокна является очень желательным свойством, однако она может привести к различным неприятностям в процессе текстильной переработки волокна. Так, если нейлон наматывают на конические шпули в условиях, принятых для камвольной пряжи, нить слегка вытягивается. После намотки эластичная нить будет стремиться восстановить свою первоначальную длину, в результате чего шпуля может быть раздавлена. Для технологических процессов текстильной переработки нейлона необходимы специальные условия, в частности низкое натяжение при перемотке. [c.281]

    Полипропилен получают из пропилена аналогично полиэтилену. Долгое время считалось, что при полимеризации пропилена можно получать лишь маслообразные продукты. Когда же научились проводить стереоспецифическую полимеризацию (см. ниже) пропилена, оказалось, что при этом получается прозрачный материал с температурой размягчения 160—170° С, предел прочности при растяжении 260—500 тсг/сж , обладающий хорошими электроизоляционными свойствами. Продавливая расплав полипропилена через фильеры, получают нити полипропиленового волокна. Это волокно обладает большой прочностью, химической стойкостью. Из него, изготовляют канаты, рыболовные сети, фильтровальные ткани. Применение полипропиленового волокна в текстильной промышленности несколько ограничено из-за его невосприимчивости к обычным красителям. Однако в последнее время появились красители, окрашивающие этот полимер в массе. [c.460]


    Автор [68] использовал нити невысокой прочности с удельной поверхностью до 340 м /г. По стандартной методике (ЫОЬ) готовились кольца с применением эпоксидных связующих. Если волокна подвергались термической обработке при 200°С, то удавалось получить только 50% качественных колец, так как сорбированная вода, снижающая адгезию, полностью не удалялась. При повышении температуры обработки (рис. 6.12) механические свойства пластика улучшались. Оптимальная температура обработки 600 °С. Исследование влияния удельной поверхности на прочность пластиков при растяжении и изгибе проводилось на образцах углеродного волокна, обработанного при 900 °С. Отмечено некоторое улучшение этих показателей с увеличением удельной поверхности волокна. Следовательно, при увеличении удельной поверхности, с одной стороны, возрастает сорбция влаги, из-за чего снижается адгезия, с другой стороны, улучшается адгезия вследствие очистки поверхности от инородных примесей. [c.287]

    Наиболее ценными свойствами тканей из полиэфирного волокна являются несминаемость в сухом и мокром состоянии, высокая устойчивость при растяжении (если ткань изготовлена из филаментарной нити, но не из штапельной пряжи), высокая устойчивость к истиранию, хорошая текстура, показатели на ощупь и внешний вид ткани, устойчивость к тепловому старению, высокая химическая стойкость и хорошая стойкость к действию солнечного света, если ткань от лучей света защищена стеклом. [c.332]

    Таким образом, выбирая условия обработки волокон и нитей поверхностно-активными, шлихтующими или другими текстильно-вспомогательными веществами, т. е. изменяя трение между нитями или волокнами и коэффициент компактности нити или пряжи, можно в широких пределах изменять такие важные физнко-механические показатели нитей и пряжи, как прочность, модуль растяжения и модуль сдвига, жесткость, прочность к истиранию, т. е. получать из одних и тех же волокон нити и пряжу срази ы ми свойствами. [c.27]

    Наибольшее практическое значение при изучении механических свойств текстильных материалов, химических волокон и нитей, в частности, получили характеристики, определяемые при растяжении. Это объясняется тем, что волокна и нити вследствие особенностей их формы чаще всего испытывают именно этот тип деформации и разрушаются при растяжении. К тому же деформация растяжения является одной из двух основных (растяжение и сдвиг). При изгибе деформацию испытывает только часть сечения над нейтральным слоем при скручивании волокна или нити, располагающиеся по винтовым линиям, также испытывают значительное растяжение. [c.434]

    Отделка. После формования моноволокна, текстильные и кордные нити подвергают обработке различными реагентами, сушке, кручению, перемотке и выпускают в виде шпуль, копсов, навоев и др. жгуты штапельных волокон режут на отрезки (штапельки) длиной 30—100 мм и подвергают обработке реагентами и сушке. В нек-рых случаях жгуты, предназначенные для производства штапельных волокон, подвергают обработке реагентами и сушат до резки. Характер обработки волокон различными реагентами зависит от условий формования. При этом из волокон удаляются низкомолекулярные соединения (напр., из полиамидных волокон), растворители (напр., из полиакрилонитрильных волокон), отмываются к-ты, соли и др. примеси, увлекаемые волокнами из осадительной ванны (напр., для вискозных волокон). Для придания волокнам мягкости, способности склеиваться друг с другом, антистатич. свойств, а также для понижения коэфф. трения после промывки и очистки их подвергают авиважной обработке, а затем сушат на сушильных роликах, цилиндрах пли в сушильных камерах. Обработка реагентами и сушка В. X. производится в натянутом (при этом волокна не изменяют физико-механич. показателей) или свободном состоянии. В последнем случае волокна усаживаются при этом незначительно снижается прочность при растяжении, но сильно возрастает относительное удлинение и улучшаются эластические свойства (прочность в петле или узелке, усталостная прочность). [c.251]

    Совершенно своеобразными по физическим свойствам материалами являются стеклянное волокно и стеклянная вата. Стеклянные нити довольно тонки. Средний диаметр нитей в зависимости от назначения и способа производства колеблется от 0,006 до 0,001 мм длина нитей может быть неограниченной. Предел прочности при растяжении для нитей диаметром 0,005 мм равен 200—300 кг/мм и резко возрастает при дальнейшем уменьшении толщины нити. При этом волокно не обнаруживает никаких признаков хрупкости, свойственной обычным изделиям из стекла. [c.161]

    Сделанные выше замечания об ограничениях методов испытания механических свойств волокон полностью относятся и к определению условного модуля растяжения. Для этого отмечают напряжение при достижении определенной величины деформации (например, 1 или 4%) и из отношения этих величин вычисляют модуль. Модуль характеризует способность волокна к переработке, которая проводится при натяжении нити, причем допускается лишь определенный уровень деформации в ходе процесса. Особое значение модуль приобретает при оценке работоспособности волокон при использовании их в качестве армирующих материалов (армированные пластмассы, шинный корд, транспортерные ленты). В последнее [c.297]


    Из этих данных видно, что условия формования практически не влияют на прочность нити, но удлинение повышается при создании более жестких условий формования более высокой температуры раствора и воздуха в шахте — а также при снижении концентрации паров ацетона в шахте. Важно также, что волокна, полученные в более жестких условиях формования, имели более высокие механические показатели после вытягивания. По-видимому, здесь, так же как и при формовании по мокрому методу, свойства волокон зависят от особенностей их макроструктуры и фазовых образований. При сухом методе формования фазовое разделение раствора может быть результатом растяжения формующейся струи и тем вероятнее, чем быстрее возрастает вязкость струи и выше продольный градиент скорости на участке растяжения. [c.402]

    В процессах переработки и условиях носки изделий нити и волокна подвергаются кроме многократного растяжения деформации изгиба. Отношение волокон и нитей к многократным изгибам является очень важным показателем их механических свойств. [c.53]

    Большая жесткость стеклянного волокна и его хрупкость предопределяют значительно меньшую величину крутки стеклянных нитей, чем нитей из других видов волокон [94]. При изменении величины крутки изменяются не только прочность на растяжение, но и другие свойства, обычно величина крутки достигает 200—300 витков на 1 м нити.  [c.488]

    Это те полимерные материалы, из которых производят искусственные волокна. Типичным волокнообразующим полимером является ПА-6,6. Попытаемся растянуть мононить из этого полимера. Можно заметить, что в отличие от каучуковой полоски процессы растяжения и деформации нити затруднены из-за ее значительного сопротивления. Как же ведет себя мононить после снятия нагрузки В отличие от каучуковой полоски она не восстанавливает свои первоначальные размеры, а сохраняет свой деформированный вид. Если мы попробуем разорвать мононить, то убедимся, что сделать это практически невозможно. Это происходит потому, что в результате растяжения ее прочность и жесткость увеличиваются, что и является свойством, характерным для волокнообразующих полимеров. При растяжении эти материалы проявляют высокую жесткость и прочность и способны лишь к необратимым деформациям. Для того чтобы материал обладал такими свойствами, необходимо, чтобы его макромолекулы имели высокую степень полимеризации и не обладали ни локализованной сегментальной, ни общей молекулярной подвижностью цепей. Макроцепи в таком полимере должны быть плотно упакованы и удерживаться вместе посредством межцепных когезионных сил, ко- [c.333]

    Эластические свойства волокна также в значительной степени определяются условиями его обработки. Величина модуля упругости почти постоянна при комнатной температуре (3 X 10 ° дин/см ). С повышением температуры модуль быстро уменьшается, затем уменьшение (после достижения температуры 68°) делается менее интенсивным, достигая постоянной величины (2.6 X 10 дин/см ) при температуре около 140°. С увеличением растяжения модуль упругости увеличивается. С увеличением относительной влажности модуль упругости показывает быстрое уменьшение. Величина эластического удлинения зависит от натяжения нри формировании нити и от степени вытяжки волокна. Если свежеот-формованное волокно вытягивается па 60% при 180° и затем подвергается термообработке и обработке формальдегидом под натяжением, то величина эластического удлинения при 5% удлинения составляет 70% от общей величины удлинения. Если волокно подвергается релаксации в горячей [c.211]

    Волокно пряжи или ткани, наоборот, анизотропно. Оно отличается исключительной направленностью своих свойств, чем и объясняются своеобразные качества текстильных структур. Текстильная пряжа может обладать значительной жесткостью в отношении расягивающих напряжений, такой же почти, как у стали. В то же время ее жесткость в отношении изгибающего напряжения может быть низкой, а ее восстановимость после испытанного напряжения равной нулю. Такие же свойства — и притом в направлении нитей — обнаруживает ткань, сотканная из указанной пряжи. Между тем, в направлении, находящемся под углом в 45° к направлению нитей, жесткость в отношении изгибающего напряжения может быть значительно большей. Отсюда вытекает единственная в своем роде способность текстиля ложиться в складки. Этим же объясняются и прочие отличительные свойства текстиля— его мягкость в сочетании со значительной сопротивляемостью растяжению и разрыву. [c.229]

    По фильерному способу вытягивания расплавленная стекломасса под давлением собственного веса вытекает из фильер (отверстия диаметром 1—3 мм) в виде капель, которые, падая вниз, растягиваются и образуют волокна. Эти волокна захватываются быстро вращающимся барабаном, вытягивающим их до заданной толщины. Этим способом получают непрерывное текстильное стеклянное волокно диаметром от 3 до 10 мк. Пучок волокон собирается в прядь и склеивается при помощи замасливающего приспособления. Нити волокон настолько эластичны, что из них вырабатывают ткани на обычных текстильных машинах. Предел прочности при растяжении стекловолокна диаметром 3—6 мк составляет 200—400 кгс мм , т. е. значительно выше, чем для обычного стекла (предел прочности при растяжении стеклянных палочек 5—6 кгс1мм ) и даже высоко- прочной стали. Из непрерывного стеклянного волокна изготовляют различные технические ткани. Так, стеклянную ткань применяют для оплетки кабелей и в качестве изоляции электро двигателей. При нагревании такой ткани до 500 °С ее изоляционные свойства не ухудшаются, что позволяет почти наполовину снизить вес электродвигателя. [c.659]

    Спирали обнаруживают правое или левое направление (независимо от пространственной конфигурации четвертичных углеродных атомов). В кристаллической решетке многих изотактических полимеров можно найти такую упаковку цепи, при которой каждая правоспиральная цепь окружена левоспиральными цепями и наоборот (рис. 4) [18, 19]. Именно высокой степени регулярности структур обязаны исключительные свойства изотактических полимеров (высокая температура плавления, высокие показатели механических свойств, возможность создавать пленки и нити из ориентированных кристаллов, имеющие высокий предел прочности на растяжение). Этим обусловлен тот большой интерес, который они вызывают по сравнению с другими пластиками и синтетическими волокнами [5]. [c.14]

    Диаметр промышленного стекловолокна находится в пределах 6—9 мк. Прочность на растяжение для обычных промышленных волокон колеблется от 35 000 до 42 000 кГ1см . На прочность волокон воздействуют различные факторы, причем понижение свойств наступает сразу же после вытяжки нитей из лодочек. Наиболее важным фактором является состояние поверхности. При стандартной влажности в помещении, где вытягивается волокно, прочность его падает, по крайней мере, на 20%. На практике к тому времени, когда стекло намотано на бобины, его прочность может упасть до 17 500 кГ/сж . [c.57]

    Реологическая с ii л а, возникающая при растяжении жидкой струи у выхода из фильеры и зависящая от вязких свойств прядильного раствора. Ее расчет, по-видимому, очень сложен. Можно лишь утверждать, что она возрастает с увеличением эффективной вязкости прядильного раствора и с увеличением скорости формования (нри постоянной скорости истечения раствора). В работе Бринегера и Эпштейна была произведена оценка реологической силы как разности между фактической (измеренной) силой натяжения нити и суммой сил инерции и трения, полученной расчетным путем. Для волокна, формуемого из 10— 15%-ного раствора гексаметилентерефталамида (6-Т) в концентрированной серной кислоте и состоящего из 4100 филаментов по 0,17 текс каждый, эта сила колебалась от 75 гс при скорости формования 10 м/мин до 175 гс при скорости формования 35 м/мин, в то время как общее натяжение нити изменялось в тех же условиях приблизительно от 100 до 350 гс. К сожалению, в этой работе не приводятся реологические характеристики раствора полимера, но на основании косвенных данных можно полагать, что эффективная вязкость таких растворов на 1—1,5 десятичных порядка выше, чем вязкость прядильных растворов ксантогената целлюлозы. Если, исходя из этих данных, произвести пересчет на условия формования вискозных нитей, описанные в работе то при максимальной скорости формования 35 м/мин реологическая сила окажется равной приблизительно 1—2 гс на нить, что составляет очень небольшую величину по сравнению с общим натяжением нити около 50—70 гс (при пути в ванне 100 см). [c.183]

    Другие волокна из линейных полимеров, хотя и не обладают высокой прочностью к истиранию и изгибу, все же значительно отличаются по своим свойствам от до сих пор известных волокон. Так, например, прочность на изгиб полиамидного волокна лежит на порядок выше, чем у хлопка и шерсти [101]. Исключительно хорошими являются также и прочность на разрыв и эластичное поведение полиамидного волокна. Пряжа из полиамидов имеет более высокую эластичность, чем эластичность пряжи из натурального шелка. При значениях растяжения от 20 до 25% полиамидные волокна имеют прочность около 6 г/денье (60 кг/мм ) эти значения лежат на уровне прочности на разрыв для. 1ИТ0Й стали. Они превосходят прочность натурального шелка прибли- ительно на 40% и в 3 раза — прочность нормального вискозного шелка [101]. Нагревая при небольшом растяжении уже растянутые полиамид-1н е нити, достигают прочностей выше 9 г денье такие нити находят значительное применение в качестве корда для автомобильных шин [104]. [c.579]

    Принцип работы динамометров маятникового типа заключается в следующем. Нить или волокно зажимают между двумя зажимами. Верхний зажим соединен с маятником силоизмери-теля, указатель которого показывает величину усилия при растяжении по шкале нагрузок. Нижний зажим перемещается с постоянной скоростью от привода. Скорость верхнего зажима изменяется в зависимости от свойств материала. При испытании сильно растяжимых материалов скорость верхнего зажима минимальная, при испытании жестких материалов скорость верхнего зажима максимальная. [c.39]

    Поливинилспиртовые волокна-характеризуются высокой прочностью при растяжении и разрьгоным удлинением (разрывное напряжение 40-50 дан/мм-, разрывное удлинение 20-25%), не очень большой потерей прочности во влажном состоянии (15-20 %), высокой устойчивостью и лучшей, чем у всех других синтетических волокон, гигроскопичностью (в нормальных атмосферных условиях содержание влаги составляет 5-6%). Важно и то, что среди всех синтетических волокон и нитей они являются и самыми дешевыми. Недостатком их является существенная потеря свойств в результате старения, главным образом из-за низкой светостойкости. [c.30]


Смотреть страницы где упоминается термин Свойства волокон и нитей растяжение: [c.134]    [c.373]    [c.148]    [c.90]    [c.18]    [c.220]    [c.53]    [c.191]    [c.256]    [c.254]    [c.276]    [c.273]    [c.256]    [c.457]    [c.112]    [c.372]    [c.32]    [c.404]    [c.286]   
Свойства и особенности переработки химических волокон (1975) -- [ c.434 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна и нити свойства



© 2024 chem21.info Реклама на сайте