Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбер тепловой

    При работе в режиме понижающего термотрансформатора рабочие процессы протекают в более высоком температурном интервале. Так, к генератору подводят тепло с температурой 100-200°С, испарителю-тепло от холодного источника (0-50 °С). От конденсатора и абсорбера тепло отводят с температурой 60-90 °С, которое может быть использовано для целей теплоснабжения, как показано на рис. 44. При этом коэффициент трансформации М определяют из соотношения  [c.72]


    Экономичность синтеза аминов во многом зависит от системы регенерации непрореагировавшего аммиака, который всегда берут в значительном избытке к алкилирующему реагенту. Схема регенерации с получением жидкого аммиака и возвращением его на реакцию также приведена на рис. 77. Газообразный аммиак со стадии разделения продуктов реакции проходит последовательно несколько абсорберов 11. Только последний из них орошается чистой водой, а предыдущие — все более концентрированной аммиачной водой, подаваемой из куба последующего абсорбера. Тепло, выделяющееся при растворении, отводится в выносных холодильниках (на схеме не изображены). Из последнего абсорбера остаточный газ, содержащий только следы аммиака, сбрасывается в атмосферу, а жидкость из куба первого аппарата представляет собой концентрированный водный раствор аммиака. Насос 12 сжимает его примерно до 14 ат, что необходимо для последующей конденсации аммиака при охлаждении водой. Полученная аммиачная вода подогревается в теплообменнике 13 кубовой жидкостью из колонны /4 и поступает иа одну из тарелок этой колонны, в которой происходит разделение аммиака и воды. Кубовая жидкость (вода) отдает свое тепло аммиачной воде, идущей на ректификацию, в теплообменнике 13 и после дополнительного охлаждения возвращается на абсорбцию аммиака. Пары аммиака с верха колонны 14 конденсируются в дефлегматоре 15, причем часть конденсата возвращается в качестве флегмы, а остальное количество собирается в емкости 16 и оттуда снова направляется на реакцию. [c.388]

    В предельном случае (совершенная обратная подача) крепкий раствор достигнет температуры кипения слабого раствора, поступающего в абсорбер. Тепло отводится не охлаждающей водой, а раствором и возвращается с ним в кипятильник. Следовательно, на эту величину уменьшается тепло, подводимое к кипятильнику (рис. 52,а). [c.123]

    Составляем тепловой баланс абсорбера при допущении, что потерями тепла в окружающую среду можно пренебречь. Тепло, внесенное в абсорбер жирным газом и отпаренным абсорбентом и выделенное в процессе абсорбции, уносится из абсорбера сухим газом, насыщенным абсорбентом, и отводится в холодильник циркулирующим абсорбентом. Введем обозначения  [c.246]

    Газы и нестабильный бензин из сепаратора С — 1 поступают в фракционирующий абсорбер К —4. В верхнюю часть К —4 подается охлажденный стабильный бензин, в нижнюю часть подводится тепло посредством кипятильника с паровым пространством. С верха К-4 выводится сухой газ, а снизу — насыщенный нестабильный бензин, который подвергается стабилизации в колонне К —5, где от него отгоняется головка, состоящая из пропан — бутановой фракции. Стабильный бензин охлаждается, очищается от сернистых соеди — нений щелочной промывкой и выводится с установки. [c.58]


    Блок абсорбции и стабилизации верхнего продукта первой ректификационной колонны 6. Основным аппаратом блока является фракционирующий абсорбер 13, разделенный глухой перегородкой на две части нижнюю — абсорбер-десорбер с 31 тарелкой и верхнюю— абсорбер второй ступени с 6 тарелками. В абсорбере-де-сорбере из газа поглощаются пропан и бутаны, а из жидкой фазы отпариваются метан и этан. Абсорбентом служит фракция н. к.— 85 °С. Абсорбер второй ступени предназначен для поглощения паров бензина, увлеченных сухим газом из абсорбера-десорбера. Абсорбентом служит фракция 140—240 °С. Насыщенный абсорбент из абсорбера второй ступени насосом подается в первую ректификационную колонну б сухой газ, выходящий с верха абсорбера второй ступени, поступает в топливную сеть завода. Тепло абсорбции в абсорбере-десорбере снимается в трех точках по высоте абсорбционной части аппарата циркуляцией абсорбента через холодильники. [c.107]

    Насосами абсорбент забирается с 12-ой, 17-ой и 23-ей тарелок фракционирующего абсорбера и после охлаждения в соответствующих холодильниках возвращается на 14-ую, 19-ую, 25-ую тарелки. Тепло, необходимое для отпарки нижнего продукта фракционирующего абсорбера 13, сообщается ему фракцией 240—300 °С основной ректификационной колонны 10 в теплообменнике. Насыщенный (жирный) абсорбент первой ступени фракционирующего абсорбера с низа его забирается насосом и через теплообменники подается в стабилизатор 12, работающий при абсолютном давлении 12 кгс/см2. Пары пропаи-бутановой фракции с верха стабилизатора поступают в конденсатор-холодильник. Конденсат — пропан-бутановая фракция —после конденсатора-холодильника собирается в емкости, откуда насосом подается на орощение стабилизатора 12, а избыток откачивается с установки. Температура низа стабилизатора поддерживается циркуляцией стабильной фракции н. к.— 85 °С через печь 7 стабильная фракция н. к. — 85 °С с низа стабилизатора насосом направляется в теплообменники, откуда часть фракции через холодильник поступает в качестве абсорбента во фракционирующий абсорбер 13, а часть через холодильник совместно с фракцией 85—140 °С направляется на выщелачивание в отстойники 22. [c.107]

    Тепло, необходимое для отпарки нижнего продукта абсорбера-десорбера, сообщается теплоносителем — выходящей из основной [c.150]

    ООО — 4 435 ООО = 3 535 ООО Это тепло подается в низ стабилизатора путем циркуляции через печь части нижнего продукта. Материальный баланс абсорбера-десорбера установки типа А-12/9 приводится в табл. 21. Материальный баланс абсорбера II ступени приведен в табл. 22. [c.152]

    С верха абсорбера 3 уходит сухой газ с содержанием углеводородов Сз —С5 не более 10—15 % (об.). В сепараторе 4 от него отделяется конденсат, а сухой газ направляется в заводскую топливную сеть. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции. Тепло для отпаривания углеводородов С1 —Са подается в низ абсорбера с помощью горячей струи . Для этого продукт с низа абсорбера забирается насосом 1, проходит один поток трубчатой печи 5 и вводится в абсорбер 3 под первую ректификационную тарелку. [c.59]

    Тепло для отпаривания легких углеводородов от стабильного бензина вводится в низ колонны горячей струей . Для этого бензин с низа этой колонны забирается насосом I, и часть его нагревается в змеевиках трубчатой печи 5 (второй поток) и поступает под нижнюю ректификационную тарелку колонны 7 (другая часть стабильного бензина направляется на орошение абсорбера 3). [c.59]

    Крепкий водноаммиачный раствор подается насосом в кипятильник, в котором выпаривается под действием подводимого извне тепла. Пары аммиака с малой примесью паров воды направляются в конденсатор, раствор из конденсатора через регулирующий вентиль поступает в испаритель, где кипит. Горячий слабый раствор через регулирующий вентиль возвращается в абсорбер, где поглощает пары, поступающие из испарителя. [c.322]

    Процесс проводится в стальной нолой трубе при давлении 7 ати. Исходную смесь нагревают до 370°. За счет тепла реакции температура в реакционном пространстве повышается до 455°. Продукты из реакционной зоны поступают в закалочный абсорбер, где орошаются разбавленным водным раствором формальдегида концентрацией 12—14%, и температура их резко снижается (до 90°). Основная часть формальдегида нри этом конденсируется. Для поддержания концентрации формальдегида в циркулирующем растворе на одном уровне часть раствора постоянно выводится для очистки и разделения, а к циркулирующему раствору добавляется свежая вода. [c.90]

    К нему входят растворы этиленгликоля и этаноламина. С верха абсорбера уходит очищенный газ, снизу — поглотительный раствор с абсорбированными сероводородом и двуокисью углерода раствор проходит теплообменник, паровой подогреватель и входит в середину десорбера. Из десорбера сверху уходят сероводород и двуокись углерода, снизу откачивают регенерированный поглотительный раствор. Часть этого раствора подогревается в кипятильниках и возвращается в десорбер для подвода тепла, а остальное количество охлаждается в теплообменнике и холодильнике и подается на верх абсорбера. [c.162]


    По описанной схеме удается извлечь только около 50% имеющегося в исходном газе пропана. Для повышения степени извлечения сжиженных газов применяют абсорбционно-отпарную колонну (фракционирующий абсорбер), состоящую из двух секций разных диаметров. Верхняя секция меньшего диаметра служит абсорбером, сверху нее подается свежий абсорбент, а снизу поступает газ. В нижнюю секцию подводится тепло, в результате чего происходит выделение поглощенного абсорбентом метана, этана и пропана. Последний вновь поглощается свежим абсорбентом в верхней секции фракционирующего абсорбера. Таким образом сверху аппарата уходит сухой газ (метан и этан), а снизу насыщенный абсорбент. Применение абсорбционного метода позволяет извлечь из исходного сырья 70— 90% пропана, 97—98% бутана, весь пентан и более тяжелые компоненты. [c.166]

    Если для регенерации растворителя применяются процессы, требующие значительных затрат тепла (ректификация, выпаривание), то стоимость всего процесса определяется в основном стоимостью стадии регенерации. При этом оптимальный расход экстрагента или абсорбента обычно близок к минимальному. В отсутствие регенерации и в случаях, когда стоимость регенерации не зависит от расхода растворителя, оптимальный расход его обычно в несколько раз больше минимального и может быть приближенно определен по минимальному объему абсорбера или экстрактора. [c.48]

    Регенерация фенола из рафинатной фазы осуществляется последовательно в печи и, в испарительной колонне 15 и затем в отпарной колонне 16. Рафинат отдает свое тепло рафинатно-му раствору в аппарате 12, охлаждается в аппарате 3 и отводится с установки. Экстрактный раствор отводится вначале на подсушку в осушительную колонну 17. Здесь отгоняется азеотропная смесь часть этой смеси конденсируется в аппарате 13 и стекает в емкость фенольной воды 14, остальное количество направляется в абсорбер 4. Подсушенный экстрактный раствор направляется для регенерации фенола в печь 21 и в испарительную колонну 23. Для полной регенерации фенола в колонну 23 вносится тепло из печи 22. Остатки фенола отгоняются от экстракта в отпарной колонне 24. Экстракт отдает свое тепло сырью в аппарате 2, охлаждается в аппарате 1 и выводится с установки. [c.247]

    Схему питания абсорбера см. на рпс. 36. При поглощении окислов азота раствором соды выделяется теило, а с повышением температуры условия абсорбции ухудшаются, поэтому необходимо предусмотреть отвод из абсорбера тепла реакции. Наибольшая скорость поглощения достигается при содержании в растворе —5 о Ха.зСОд. [c.293]

    При проходе влажного воздуха через химпоглотитель (на фиг. 39 вместо конденсатора абсорбер) тепло, израсходованное на испарение в сушилке, компенсиру- [c.96]

    Тепло, внесенное в абсорбер насыщенным абсорбентом п водяны1 г каром и подводимое через кипятильник, отводится отпаренным абсорбентом и газом. Из теплового баланса десорбера находим количество тепла, подлежащее подводу через кипятильник  [c.248]

    По методу S ientifi Design o. газообразные хлор, углеводоров и четыреххлористый углерод вводятся в реактор при 500—650 °С. Процесс проводится без катализатора и без подвода тепла извне. Выходящпй газ резко охлаждается 21—36%-ной соляной кислотой, не абсорбированные при этом газы пропускаются через НС1-абсорбер, дающий 20%-ную соляную кислоту, которая снова возвращается в цикл. Газы, выходящие из НС1-абсорбера, подаются на установку для регенерации хлора. Продукты реакции после закалочного аппарата направляются в отстойник. Верхний слой представляет собой соляную кислоту, а из нижнего слоя дистилляцией выделяются четыреххлористый углерод и хлор [194], возвращаемые в цикл. С верха последней колонны выделяется чистый перхлорэтилен. При этом методе практически нет потерь. [c.202]

    На рис. 55 приводится принципиальная схема блока стабилизации и абсорбции, используемого на комбинированной установке ЭЛОУ — АВТ со вторичной перегонкой бензина (тип А-12/9) производительностью 3 млн. т/год сернистой нефти Ромашкинского месторождения. Смесь легких бензиновых паров и газа из первой ректификационной колонны атмосферной части установки АВТ поступает в емкость для сепарации газа 2. Газ после отделения от жидкой фазы проходит в абсорбер 9. Абсорбентом служит фракция н. к. — 85 °С, коточая подается с низа стабилизатора через теплообменники 8. Избыток фракции н. к. — 85 °С выводится из системы. Абсорбентом для абсорбера II ступени служит фракция 140—240 °С, выходящая из осксзной ректификационной колонны атмосферной части. Насыщенный абсорбент из абсорбера II ступени насосом подается в основную ректификационную колонну. Сухой газ, выходящий с верха абсорбера II ступени, поступает в топливную сеть завода. Тепло абсорбции во фракционирующем [c.149]

    Блок абсорбции-десорбции (фракционирующий абсорбер). Во фракционирующем абсорбере контролируется и регулируется подача абсорбента в абсорбер II ступени, в зависимости от содержания С5 в уходящем сухом газе подача абсорбента в абсорбер-десорбер в зависимости от содержания Сз в уходящем сверху газе расход деэтаиизированной фракции н.к.— 140 °С и абсорбента, выходящего из абсорбера, в зависимости от содержания Сг в жидкой фазе уровень в кипятильнике фракционирующего абсорбента давление. Излишнее тепло в абсорбере снимается циркулияцией абсорбента через холодильники. Температура под тарелкой, с которой забирается абсорбент, регулируется подачей охлажденного абсорбента. Расход циркуляционного абсорбента регистрируется. [c.224]

    Этан-этиленовая фракция с содержанием 50—60% этилена из цеха газоразделения подается в нижнюю часть тарельчатого реактора-абсорбера. В верх реактора подается серная кислота с концентрацией 96—98%. В реакторе при давлении 25 ат и при температуре 65 —75° С происходит абсорбция этилена серной кислотой с образованием этилсерной кислоты и диэтил сульфата. Для снятия тепла абсорбции на каждой тарелке реактора распо-ложены охлаждающие водяные холодильники. Этан выходит с верха колонны с содержанием этилена 2—4%. Отходящие из реактора газы после дросселирования до 7 —8 ат промываются водой, нейтрализуются 5—10%-ной щелочью и направляются после осушки в брызгоуловителе на пиролиз в виде возвратной этановой фракции. [c.29]

    Процесс сернокислотной гидратации пропилена осуп ествляет-ся следуюш пм образом (аналогично представленной на рпс. 4 схеме сернокислотной гидратации этилена). Пропилен в виде иропан-пропиленовой фракции поступает в абсорбер. Сюда же подается серная кислота с концентрацией около 70%. Применение более концентрированной кислоты приводит к увеличенному выходу полимеров пропилена. Повышение температуры также способствует образованию побочных продуктов. Вследствие этого процесс проводят в мягких температурных условиях (65—70° С). Для снятия экзотермического тепла реакции сульфирования пропилена применяют рециркуляцию изопропилсерной кислоты, охлажденной в выносных холодильниках. [c.44]

    Вертикальное расположение колонных аппаратов, обусловившее их название (колонны), диктуется экономией производственных площадей, простотой внутри- и межагрегатных коммуникаций, а также рациональной организацией взаимодействующих потоков в самих аппаратах (движение тяжелой фазы вниз, легкой — вверх). Значительно реже применяются горизонтальные тепло- и массообменные аппараты, особенно секционированные. Областью их преимущественного использования являются процессы высушивания и обжига (барабанные сушилки, обжиговые печи). В отдельных производствах встречаются также барабанные кристаллизаторы, абсорберы, экстракторы, ректификаторы и химические реакторы. [c.14]

    Есл -.выделение поглощенных компонентов иа насы.- щенного абсорбента намечается производить путем десорбции, абсорбент предварительно подогревается теплом отходящих потоков или паром, а затем подается на верх десорбера, в нижкюю часть которого вдувается десорбирующий агент (например, чистый компонент разделяемой смеси). Отпаренный компонент вместе с десорбирующим агентом направляется на дальнейшую переработку, а ненасыщенный абсорбент охлаждается в теп/ообмелнике и снова подается в абсорбер. [c.38]

    II ступени 4 — конвертор СО 5 — регенератор тепла 6 — абсорбер СО2 7 — регенера- [c.108]

    Десорбер. как и абсорбер, представляет собой цилиндрический тарельчатый аппарат. Обводненный гликоль, предварительно подогретый п теплообменнике, подается в середину десорбера. Сверху его вы-х()дяг пары воды, которые конденсируются в конденсаторе-холодиль-нике, и конденсат частично возвращается на верх десорбера в качестве оро1ления. Вниз десорбера подводится тепло путем подогрева части гликоля в паровом подогревателе. Регенерированный гликоль, содержащий 1—5 вес. % воды, охлаждается в теплообменнике, холодильнике и возвращается в абсорбер. [c.158]

    Десорбцию проводят при относительно повышенных температурах (160—200° С) и пониженных давлениях (3—5 ат). Для десорбции углеводородов из насыщенного абсо"рбента требуется, чтобы парциальное давление извлекаемого компонента в газовой фазе было ниже, чем в жидкой. В качестве десорбирующего агента обычно применяют острый водяной пар. Отпаренные тяжелые углеводороды и водяной пар отводятся сверху десорбера, проходят конденсатор-холодильник и поступают в водоотделитель. Из водоотделителя вода выводится снизу, часть жидких углеводородов возвращается в десорбер на орошение, а балансовое количество поступает в емкость нестабильного газового бензина. Снизу десорбера выходит регенерированный абсорбент, который в теплообменнике отдает свое тепло насыщенному абсорбенту, охлаждается в холодильнике и возвращается наверх абсорбера. [c.166]

    Основные энергетические потоки пХМ следующие тепло греющего пара Qr- которое подводится я раствору в генераторе и является основной частью расхода энергии в установке тепло охлаждаемого объекта Qo. которое подвоцится к аммиаку в испарителе и характеризует полезный. эффект установки — ее холодопроизводительность тепло, которое отиодится в конденсаторе, абсорбере и дефлагматоре охлаждающей водой и в конечном счете передается атмосферному воздуху в вентиляторных градирнях. [c.185]

    Подбор аппаратов АХМ. Подэор и поверочный расчет основных теплообменных аппаратов (испарителя, конденсатора, дефлегматора и теплообменников для регенерации тепла) проводится по общей схеме, представленной в гл. II. При )асчете абсорбера, выпарного элемента генератора и ректификацион-рой колонны следует использовгть материал глав III, V—VII. Примеры расчета этих аппаратов даны в литературе [5]. [c.191]


Смотреть страницы где упоминается термин Абсорбер тепловой: [c.619]    [c.619]    [c.231]    [c.596]    [c.245]    [c.159]    [c.206]    [c.194]    [c.240]    [c.102]    [c.9]    [c.5]    [c.415]    [c.23]    [c.141]    [c.187]    [c.185]    [c.185]   
Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.205 , c.206 ]

Расчеты основных процессов и аппаратов переработки углеводородных газов (1983) -- [ c.20 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбер



© 2025 chem21.info Реклама на сайте