Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды растворимость

    ФОСФАТИДЫ. Жироподобные вещества, принадлежащие к липидам, растворимые в органических растворителях. Имеют важное биологическое значение. Они участвуют в образовании оболочек клетки и клеточных структур. Много их в нервной ткани. К числу Ф. принадлежат лецитин и др. [c.322]

    Липиды представляют собой вещества, растворимые во многих органических растворителях (не содержащих групп, способных образовывать водородные связи), но нерастворимые или очень мало растворимые в воде. Многие липиды — важные компоненты растительных и животных организмов. Эти вещества — производные жирных кислот и сложных спиртов. [c.405]


    Небелковый азот Связанные липиды Растворимые углеводы Волокна [c.409]

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]

    Поэтому для характеристики липидов особое значение имеет их растворимость. Все липиды, будучи нерастворимыми в воде, растворимы легко в эфире, петролейном эфире, бензоле, хлороформе, дихлорэтане, трихлорэтилене, четыреххлористом углероде, сероуглероде и некоторых других индиферентных органических растворителях. Кроме того, многие липиды растворимы в спирте и ацетоне. По своей растворимости липиды, таким образом, резко отлич.аются от углеводов и белков. Такая своеобразная растворимость липидов является свойством практически важным, поскольку она позволяет отделить их от других соединений, находящихся в составе различных тканей и органов. [c.113]

    После удаления воды ферментативные процессы совершаться не могут, поэтому лиофильную сушку считают одним из самых удачных способов биохимической фиксации клеток и тканей. Для того, чтобы получить информацию о распределении в клетках меченых по продуктов фотосинтеза, высушенную ткань гомогенизируют в органическом растворителе и затем образовавшуюся смесь подвергают разделению с помощью дробного центрифугирования. Этот способ позволяет отделить хлоропласты от остальных частей клеток таким образом, что меченые по углероду гидрофильные продукты фотосинтеза (органические фосфаты, сахара, аминокислоты, окси- и кетокислоты) остаются в тех участках клетки, где они находились в момент замораживания. Естественно, этот метод неприменим для определения локализации гидрофобных продуктов фотосинтеза (липидов), растворимых в неводных растворителях. [c.260]


    Жиры и масла принадлежат к общему классу соединений, называемых липидами, отличительным признаком которых является растворимость в органических растворителях. Объясните на основании структурн 1х соображений, почему жиры принадлежат к этому клас- [c.468]

    Мембранные ферменты отличаются от растворимых ферментов одним важным свойством все они прочно связаны с липидным бислоем соответствующих мембран. Поэтому помимо субстратов, активаторов или ингибиторов их регуляторами являются сами мембранные липиды. Белок-липидные взаимодействия играют важную роль в регуляции активности мембранных ферментов, причем действие многих биологически активных соединений реализуется через изменение структурного состояния липидного бислоя. [c.358]

    Было высказано предположение [36], согласно которому стабильность структуры макромолекул и мембр-ан обеспечивается главным образом гидрофобными взаимодействиями углеводородных фрагментов, в результате чего молекулы липидов, белков и других соединений могут образовывать в водной цитоплазме олигомерные агрегаты и мембраны. Вместе с тем наиболее активные катализаторы, т. е. большинство ферментов, растворимы в воде. Таким образом, мембраны представляют собой сравнительно стабильные тонкие пленки, примыкаю щие к водным участкам клетки, в которых легко протекают химические реакции и которые содержат полярные молекулы, растворимые в воде. [c.355]

    Исследованию подвергались ароматические углеводороды, фенолы, ароматические карбоксильные кислоты, пирены и липиды. Их растворимость уменьшалась с увеличением молекулярной массы и особенно при введении в молекулу полярной функциональной группы. Так, производные бензола, соединенные с тремя фенольными гидроксилами, еще экстрагировались, так же как и соединения с одной карбоксильной и двумя гидроксильными группами. Соединения с одной карбоксильной и тремя или более гидроксильными группами углекислым газом не экстрагировались. [c.114]

    Предложена также модель переменной диэлектрической проницаемости, согласно которой ионофоры, растворяясь в мембране, повышают ее диэлектрическую проницаемость и тем самым увеличивают растворимость ионов в мембране, а следовательно, и ее проводимость. Перенос ионов возможен и за счет окислительно-восстановительной реакции на границе раздела липид— вода В- 2В+ . Эта реакция сопровождается инжекцией электронов в мембрану. Схема переноса различна в зависимости от того, растворима или нерастворима частица В в липидной фазе  [c.141]

    Идею обращения фаз используют в некоторых современных представлениях о биологических мембранах, как о твердообразных эмульсиях, изменяющих в процессе обмена веществ свой тип и проницаемых в одном случае для водорастворимых веществ, в другом — для веществ, растворимых в липидах. [c.290]

    Термином липиды называют очень большую и крайне разнородную группу веществ. В основе отнесения этих веществ к единой категории лежит их высокая растворимость в неполярных растворителях или близость к соединениям, которые обладают таким свойством. Большинство липидов не является высокополимерными соединениями и состоит всего из нескольких связанных одна с другой молекул. Некоторые из этих строительных блоков представляют собой линейные цепи ряда карбоновых кислот, образующихся в ходе сложных реакций полимеризации, Полученные в результате молекулы, например молекулы жирных кислот, имеют по большей части гидрофобный характер, однако обычно содержат как минимум одну полярную группу, которая может служить местом связывания с другими компонентами. Довольно часто присутствуют ионные группы (фосфат, —ЫНз) или полярные углеводные компоненты. Липиды, содержащие как полярные, так и неполярные группы, обычно встречаются в мембранах и на других поверхностях раздела между водной средой и гидрофобными областями внутри клеток. [c.146]

    Мембраны состоят в основном из белков и липидов [10], весовое соотношение между которыми колеблется приблизительно от 1 4 в миелине до 3 1 в мембранах бактерий. Наиболее типичным можно считать, однако, весовое соотношение этих компонентов 1 1. В мембранах иногда присутствуют также в незначительных количествах углеводы (менее 5 %) и следы РНК (менее 0,1%). Наличие липидных компонентов обусловливает такие свойства мембран, как высокое-электрическое сопротивление, непроницаемость для ионов и других полярных соединений и проницаемость для неполярных веществ Так, например, для большинства анестезирующих препаратов характерна высокая растворимость в липидах, обеспечивающая возможность их проникновения через мембраны нервных клеток. [c.338]

    В клетке нет ничего статичного. Структуры постоянно создаются и снова разрушаются. Всё с большей или меньшей скоростью подвергается взаимопревращению. Гидролитические ферменты атакуют все полимеры, из которых состоят клетки, а активные катаболические реакции разрушают образующиеся в результате таких атак мономеры. Мембранные структуры также подвергаются изменениям в результате гидроксилирования и гликозилирования. Эти реакции являются источником движущей силы, обеспечивающей перемещение материала, образующегося в результате распада мембран, на наружную поверхность клетки. В это же время другие процессы, включая процессы распада под действием лизосомных ферментов, дают возможность материалу, из которого строятся мембраны, вновь проникать в клетку. Окислительные процессы приводят к разрушению веществ гидрофобной природы, таких, как стерины и жирные кислоты мембранных липидов, и к их превращению в более легко растворимые вещества, которые затем распадаются н подвергаются полному окислению. [c.502]


    Липиды — вещества, имеющие различное химическое строение, но обладающие общим свойством высокой растворимостью в неполярных растворителях. Имеют гидрофобный характер. Различают нейтральные липиды (свободные жирные кислоты и их эфиры, моно-, ди-и триацилглицерины, стероиды, воски, углеводороды) и полярные липиды (глицерофосфолипиды, сфинго- и гликолипиды, цереброзиды). [c.67]

    Характерная и общая для всех липидов растворимость не шсключает, однако, некоторых, довольно заметных, различий в растворимости у различных представителей этой группы веществ. Так, например, нейтральные жиры представляют собой вещества с резко гидрофобным характером, легко растбориЛты в эфире и значительно труднее в спирте, в то время как фосфа-тиды, хотя и нерастворимы в воде, но набухают в ней, образуя эмульсии, и легче растворимы в спирте, чем жиры. [c.114]

    Белки могут образовать с липидами растворимые и нерастворимые комплексы. К первому типу принадлежат липопротеины крови и других жидкостей организма животных. Плазма крови, несмотря на то, что она представляет собой прозрачную жидкость, содержит 0,5—0,7% нерастворимых липидов. Значительная часть этих липидов не может быть извлечена из плазмы обычно применяющимся для этой цели эфиром или другими неполярными растворителями. Машбёф рассматривает это как доказательство того, что указанная часть липидов находится в соединении с белками, образуя комплексы, которые он назвал синапсами [3]. Эти липопротеиновые комплексы осаждаются при обычном высаливании сернокислым аммонием [4]. Некоторое количество липидов можно обнаружить также во фракциях белков, полученных электрофоретическим путем [5]. Комплексы липопротеинов расщепляются при комнатной температуре этиловым спиртом и ацетоном, причем большая часть липидов, отцепившихся от комплекса после обработки спиртом, может быть извлечена эфиром. Для того чтобы избежать денатурации белков, рекомендуется производить расщепление комплекса липопротеинов спиртом и эфиром при низких температурах [6] или путем повторного замораживания и оттаивания этих комплексов в присутствии эфира 7]. [c.228]

    Липиды представляют собой неоднородную группу различных соединений, присутствующих в биологических системах липиды растворимы в органических растворителях и нерастворимы в воде. Прежде чем подвергнуть хроматографическому анализу при помощи вспомогательных методов, их разделяют на фракции составных компонентов. Липиды являются относительно высокомолекулярными соединениями, обладающими низкими упругостями паров. Поэтому перед хроматографическим разделением их часто превращают в более летучие производные. Перед вводом в колонку структурно модифицируют следующие липиды глицериды, фосфолипиды, стери-новые эфиры, высшие жирные кислоты, 0-алкилглицерины и высшие альдегиды жирного ряда. Стерины и высшие спирты жирного ряда можно хроматографически разделять и как таковые и в виде их производных. Углеводороды хроматографически разделяют, не подвергая каким-либо вспомогательным превращениям. Амины и высшие нитрилы жирного ряда в природе не встречаются, однако члены обоих указанных гомологических рядов готовят из природных липидов. [c.447]

    Сходные результаты получены и для регуляторных белков млекопитающих. Например, хорошо изучено действие белков-регуляторов, относящихся к семейству рецепторов стероидных гормонов. Эти рецепторные белки обеспечивают ответ клеток на различные липид-растворимые гормоны, активируя или подавляя активность определенных генов, В состав этих белков-рецепторов входит центральный ДНК-сязывающий домен, содержащий около 100 аминокислотных остатков. Как и в случае gal4, этот домен несет серию цинковых пальцев и узнает специфическую последовательность ДНК. У некоторых белков, входящих в состав семейства, домен, активирующий транскрипцию, находится на аминоконце. Кроме того, все рецепторы на карбоксильном конце белка содержат гормон-связывающий домен (рис. 10-25). Эксперименты по обмену доменов показали их взаимозаменяемость. Например, замена ДНК-связывающего домена рецепторного белка глюкокортикоида на ДНК-связывающий домен рецептора эстрогена приводит к тому, что [c.196]

    Для фиксации липидов наиболее часто используется формальдегид, который может изменять физические свойства липидов растворимость, дисперсия, первичная флуоресценция и др.). Возможное в процессе фиксации частичное растворение и вымывание липидов, особенно фосфолипидов, можно в значительной мере ограничить добавлением в фиксирующую смесь ионов Са, Со или Сд, поскольку эти электролиты способствуют образованию комплексов между липидами и белками. Поэтому фиксирующая смесь Бейкера, содержащая формальдегид и кальций, щироко используется в гистохимии липидов. Фиксация липидов формальдегидом в значительной мере предотвращает растворение липидов в процессе обезвоживания и заливки тканей в полиэтиленгликоль или карбовакс. Другая возможность предотвращения вымывания липидов, особенно фосфолипидов, в органических растворителях, используемых при заливке в парафин, заключается в добавлении в фиксирующую смесь бихроматов. Длительное хромирование при высоких температурах позволяет обеспечить сохранность нейтральных жиров при заливке в парафин. Хорощим дополнением к фиксации общих липидов формальдегидом служит рекомендуемая Элфтманом (ЕШтап) фиксация тканей (за исключением нервной) в смеси растворов сулемы и бихромата (табл. 7). [c.47]

    Как правило, они являются стабильными соединениями, которые медленно разлагаются на свету или в водных растворах кислот. Физические свойства N-нитрозаминов зависят от природы замещакющх групп. Некоторые подобно К-нитрозодиметиламину представляют собой маслянистые жидкости, хорошо растворяющиеся в органических растворителях, другие, например Н-нитрозодифениламин, - твердые вещества, практически не растворимые в воде. Значительно различаются и коэффшшен-ты распределения этих веществ в системе липид/вода. Максимумы УФ-поглощения нитрозаминов в воде лежат в области 230-240 и 330- 350 нм. [c.91]

    Попытки установить корреляцию между содержанием этих соединений и концентрацией нитратов и нитритов четкой взаимосвязи не выявили. Результаты свидетельствуют о том, что уровни К-нитрюзодимеп ил-амина остаются довольно постоянными при повышении температуры обработки, но возрастает содержание нитрозопирролидина. Растворимые в липидах нитрозамины обычно накапливаются в жировых компонентах пищи ]172], [c.93]

    ФОП и ХОП из образцов растительного происхождения извлекают ацетонитрилом [54 и ацетоном [55,56] Установлено, что для извлечения пестицидов из растений, содержащих большие количества восков и липидов, лучше применять ацетон, а для образцов с большим содержанием пигментов - смесь гексана с изопропиловым спиртом (1 1). При экстракции пестицидов из почв используют ацетон, метанол, этилацетат, ацетонитрил и хлороформ [54,57-60]. Присутствующая в почвах вода, как правило, ослабляет силы адсорбционного удерживания пестицидов из-за процессов гидратации. Поэтому перед их извлечением почву рекомендуется хорошо увлажнить водой или обработать растворами кислот (щелочей), Поскольку при извлечении пестицидов в органический растворитель обычно переходят их гидратированные формы, то используют хорошо растворимые в воде растворители (метанол, ацетон, ацетонитрил и др,) или смеси с неполярными жидкостями, тогда как при экстракции из воды в основном применяются последние. Важно подчеркнуть, что степень извлечения органических компонентов из твердых образцов сильно зависит от прочности их связей с белками и другими составляю 1цими исследуемых субстратов [c.212]

    Определить понятие липид" не так просто — в зависимости от того предмета, где этот материал рассматривается, это понятие может быть разным. Чаще всего под этим классом природных веществ рассматривают все природные соединения, нерастворимые в воде и растворимые в органических растворителях. Конечно, признак слишком обширный под это определение попадают природные соединения различной структуры и различной биологической функциональности. Иногда их подразделяют на омыляемые липиды — те, которые при щелочном гидролизе дают жирные кислоты и на неомыляе-мые липиды — те, которые не подвергаются гидролизу. Но это мало облегчает задачу, так как вторая группа по-прежнему остается слишком неопределенной. В настоящем издании мы будем придерживаться определения липидов как жирных кислот и их производных, рационального как с химических, так и с биологических позиций. [c.103]

    Следует отметить, что при выборе aдpeнoблoкaтo-ров для лечения конкретного больного большое значение, придается не столько силе действия, сколько палнчР1ю у препарата следующих свойств избирательности эффекта, внутренней симпатомиметической активности, растворимости в липидах и мембраностабилизирующей активности (табл. 12). [c.114]

    Липиды (от греч. lipos — жир) — жиры и жироподобиые вещества. Нерастворимы в воде, хорошо растворимы в спиртах, эфире, хлороформе, бензоле. К Л. относят жиры, воски и группу липоидов фосфатиды, стеролы (напр., холестерин) и стероиды. Л. принадлежат к важным биологическим веществам, входящим в состав всех живых клеток. Выделяют Л. из биологических объектов экстракцией органическими растворителями. Индивидуальные Л. выделяют хроматографическими методами. Л. применяют как продукты питания, в медицине, в различных отраслях промышленности. [c.77]

    Глюкозо-6-фосфатаза — интегральный белок микросомальных мембран, Активный центр фермента обращен внутрь везикул, поэтому для полного выявления его активности и изучения кинетических свойств необходима обработка мембранного препарата поверхностноактивными веществами — детергентами. Детергенты представляют собой специальную группу липидов, относящихся к классу растворимых амфифиль-ных соединений, т. е. соединений, имеющих в своей структуре как гидрофильные, так и гидрофобные участки. В зависимости от пространственной структуры, соотношения гидрофильной и гидрофобной зон, наличия заряженных групп детергенты обладают различным характером действия на биологические мембраны от мягкого, вызывающего лишь дезориентацию структурных компонентов мембран, до значительно выраженной их солюбилизации и растворения мембран. [c.370]

    Другая важная группа средств, влияющих на функциональное состояние нервной системы, — это анестетики [ИЗ]. К ним относятся как соединения довольно большого молекулярного веса, например барбитураты, так и очень простые соединения типа диэтилового эфира илн га-лотана (СРзСНСШг). В настоящее время галотан представляет собой наиболее широко употребляемый ингаляционный анестетик. Относительно механизма действия анестетиков существует несколько теорий. Принято считать, что эффективность препаратов этого типа зависит от их растворимости в липидах, однако чрезвычайно трудно указать место приложения их действия в нервной клетке. Согласно одной из недавно высказанных гипотез, анестетики способны расщеплять водородные связи [114]. Основной эффект анестетиков на уровне клетки состоит в уменьшении тока ионов натрия через мембраны нервных клеток [114а]. [c.347]

    За исключением нескольких первых членов ряда, растворимых в воде, жирные кислоты имеют сильно выраженные гидрофобные свойства. Однако все они являются кислотами, их рКа" 4,8. Встречающиеся в природе свободные жирные кислоты, как правило, находятся на поверхности раздела липидов и воды и содержат диссоциированные карбоксильные группы, выступающие в водную среду. Однако обычно природные жирные кислоты этерифицированы или посредством амидной связи соединены с другими компонентами сложных липидов. [c.151]

    Другим важным белковым компонентом миелина является протео-липид, сильно обогащенный остажами гидрофобных аминокислот он содержит жирные кислоты, присоединенные, вероятно, сложноэфирными связями [9]. Подобные протеолипиды встречаются достаточно часто [33а]. Из эндоплазматического ретикулума мышечных клеток был экстрагирован белок с мол. весом 12 ООО, растворимый в смеси хлороформ— метанол (2 1). Субъединицы F-пилей Е. oli (гл. 1, разд. А.6) примерно такого же размера находятся (в растворенном состоянии) в наружной мембране клеточной стенки бактерий [ЗЗЬ]. [c.354]

    Каковы же функции этих интересных хинонов и хромаяолов По имеющимся на сегодня представлениям, убихиноны являются компонентами цепи переноса электронов, растворимыми в липидах митохондриальных мембран. Подразумевается, что пластохиноны выполняют аналогичную функцию в системах переноса электронов, находящихся в мембранах хлоропластов. С другой стороны, функции витаминов Е и К пока определенно не известны. Имеются данные, что в некоторых микобактериях витамин К входит в цепь переноса электронов и функционирует точно так же, как убихиноны у млекопитающих. Некоторые бактерии содержат как менахиноны, так и убихиноны. Однако у высших организмов единственная известная в настоящее время функции витамина К связана с синтезом белков, необходимых для свертывания крови (дополнение 10-Г). [c.385]

    Разные условия опытов приводят к более или менее полному экстрагированию различных белков и к получению в большей или меньшей степени чистых фракций глиадинов и глютенинов. Значительную роль могут играть такие факторы, как температура и число экстракций, интенсивность перемешивания. Сообщалось также, что присутствие липидов в муке или клейковине влияет на экстрагируемость белков. Удаление липидов может привести к нерастворимости глютениновой фракции, обычно растворимой в 55 %-ном этаноле [40]. Удаление липидов также снижает растворимость белков в 0,05 н. уксусной кислоте 48]. Однако некоторые авторы не обнаружили этого эффекта, который, видимо, зависит также от использования метода извлечения жиров и возможной денатурации белков в ходе этой операции [146]. [c.180]


Смотреть страницы где упоминается термин Липиды растворимость: [c.576]    [c.196]    [c.33]    [c.313]    [c.117]    [c.117]    [c.132]    [c.19]    [c.137]    [c.247]    [c.156]    [c.217]    [c.322]    [c.355]    [c.399]   
Биохимия Том 3 (1980) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте