Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная диффузия и массообмен

    Массообмен осуществляется путем молекулярной, турбулентной или конвективной диффузии, из которых наиболее медленной является первая. Перенос вещества внутри неподвижной фазы осуществляется только путем молекулярной диффузии. В движущейся среде перенос вещества может происходить как молекулярной диффузией, так и конвективным переносом самой средой в направлении ее движения. [c.24]


    В первой и третьей зонах реактора протекают физические процессы подвода и отвода веществ, подчиняющиеся общим законам массопередачи. Закономерности массопередачи определяются законами фазового равновесия, движущей силой процесса и коэффициентами скорости массообменных процессов. Массопередача осуществляется путем молекулярной диффузии, конвекции, испарения, абсорбции и десорбции. [c.95]

    При отсутствии циркуляции внутри частицы уравнения конвективной диффузии сводятся к уравнению молекулярной диффузии. Будем рассматривать массообмен, осложненный прямой бимолекулярной реакцией дробного порядка. Для обратной реакции приведем два случая -мономолекулярную и бимолекулярную реакцию. Рассмотрим общий случай соизмеримых сопротивлений фаз. Циркуляцией внутри частицы можно пренебречь в системе жидкость-газ из-за больщих значений д или при наличии ПАВ, тормозящих циркуляцию. [c.284]

    К наиболее существенным источникам неравномерности распределения элементов потока по времени пребывания в промышленных аппаратах можно отнести неравномерность профиля скоростей системы турбулизация потоков молекулярная диффузия наличие застойных областей в потоке каналообразование, байпасные и перекрестные токи в системе температурные градиенты движущихся сред тепло- и массообмен между фазами и т. п. Перечисленные причины, существующие в технологических аппаратах и действующие в различных комбинациях, обусловливают специфический характер неравномерности в каждом конкретном случае. Для оценки неравномерности потоков вводится ряд функций распределения, каждая из которых является результатом установления однозначного соответствия между произвольной частицей потока и некоторым характерным для нее промежутком времени. [c.204]

    Как уже указывалось, описанная выше структура горящего факела представляет принципиальную схему. Сложные процессы массообмена, зависящие от характера движения газов (ламинарное или турбулентное), оказывают влияние на структуру факела. Структура, о которой шла речь выше, наиболее соответствует ламинарному факелу, при котором фронты горения устойчиво сохраняют свою форму и имеют вид, показанный на рис. 87. Массообмен между зонами I, II и III через поверхности Fj-jj, Fj-iji и Fii-jij происходит вследствие молекулярной диффузии. Так, в область I из областей II и III диффундируют продукты горения, в область III диффундирует воздух из окружающей атмосферы и т. д. [c.155]


    Важную роль в технологических процессах играет, как известно, явление массопереноса, т. е. явление переноса массы вещества между двумя фазами. Существует несколько теорий процесса массопереноса через межфазную поверхность. Наибольшее распространение получила пленочно-пенетрационная теория, которая утверждает, что имеет место двойственный механизм диффузии. При малом времени контакта массообмен протекает как ряд неустановившихся процессов диффузии компонента от межфазной поверхности к элементарным вихрям сплошной фазы, соприкасающимся с поверхностью и проникающим в глубь сплошной фазы. При более длительном времени контакта действует механизм молекулярной диффузии через ламинарные пограничные пленки по обе стороны раздела фаз. [c.30]

    Конвективная диффузия. Количество вещества, переносимого в пределах фазы вследствие конвективного переноса вместе с самой средой в направлении ее движения, пропорционально скорости движения среды. Суммарный перенос вещества в результате конвективного переноса и молекулярной диффузии по аналогии с теплообменом называют конвективным массообменом или конвективной диффузией. [c.26]

    Основным физико-химическим процессом экстракции является обмен между органической и водными фазами до достижения равновесия. Массообмен осуществляется на межфазной фанице в результате перехода компонентов из фазы, где концентрация выше равновесной, в фазу, где концентрация ниже равновесной. Массообмен лимитируется встречным диффузионным транспортом компонентов от границы в объем фазы и наоборот. Очень медленный процесс молекулярной диффузии должен быть дополнен конвективной диффузией в объеме фазы, для чего необходимо создать в ней интенсивные вихревые токи с помощью гидродинамических воздействий. [c.169]

    Массообменные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и по-атому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение [и экстракция из пористых твердых тел, кристаллизация, адсорбция и сушка. [c.13]

    Суммарный перенос вещества вследствие конвективного переноса и молекулярной диффузии, по аналогии с теплообменом, называют конвективным массообменом, или конвективной диффузией. [c.392]

    При массообмене в неподвижной среде = гю = гю — О, а конвективная составляющая в левой части уравнения (Х,16) равна нулю, и уравнение обращается в дифференциальное уравнение молекулярной диффузии [c.394]

    При больших скоростях потока газа-носителя влиянием продольной молекулярной диффузии можно пренебречь величина ВЭТТ при этом может сильно возрасти вследствие сопротивления массообмену. [c.99]

    При вытекании газа из насадки в неподвижный воздух образуется струя, характер которой зависит от того, вытекает ли из насадки ламинарный или турбулентный поток. Если поток ламинарный, то струя из насадки движется, сначала практически не расширяясь, и ее массообмен с окружающим воздухом происходит только путем молекулярной диффузии, т. е. очень медленно. Лишь на некотором расстоянии Н от сопла появляются гребни и завихрения, указывающие на наступление турбулентного состояния, которое постепенно охватывает все сечение факела. По мере увеличения скорости вытекания газа расстояние Н уменьшается (рис. 77 и 78) и становится близким к нулю в области критических значений числа Рейнольдса (для вытекающего потока). Размытые края струи до начала турбулентного состояния (см. рис. 77) указывают на наличие процесса молекулярной диффузии между газом и окружающей воздушной оболочкой, увлекаемой движущимся газом [78]. Взаимодействие [c.145]

    Основными причинами расширения хроматографических зон являются турбулентная диффузия, зависящая от качества наполнения колонки, молекулярная диффузия и сопротивление массообмену. С учетом этих факторов было выведено основное уравнение для высоты, эквивалентной теоретической тарелке при хроматографии в системе газ — жидкость  [c.489]

    Член, характеризующий Член, характеризующий Член, характеризующий влияние турбулентной молекулярную диффузию сопротивление массообмену диффузии [c.489]

    Отмеченные недостатки двухпленочной модели массообмена, постулирующей стационарный режим массообмена, обусловили появление других моделей, постулирующих нестационарный режим процесса. Так, пенетрационная модель Хигби предполагает, что переход вещества совершается в результате сменяющих друг друга элементов данной фазы (жидкости, газа, пара) на межфазной поверхности, куда они доставляются из основной массы молекулярной диффузией. Вследствие быстрой смены этих элементов происходит пульсирующее обновление межфазной поверхности, причем из-за кратковременности контакта с ней каждого элемента массообмен протекает в условиях нестационарного режима, т. е. количество переходящего вещества изменяется во времени. Принимая, что все элементы каждой фазы контактируют с межфазной поверхностью одинаковое время Тэ, а на самой поверхности существует фазовое равновесие, Хигби получил следующее выражение  [c.444]


    Массообмен капли, взвешенной в турбулентном потоке, происходит за счет доставки вещества к поверхности капли турбулентными пульсациями и за счет механизма молекулярной диффузии. Как показано в разделе 16.2, выражение для массового потока вещества на поверхности капли зависит от соотношения между радиусом капли и внутренним масштабом турбулентности Хд = где — диаметр рабочего сечения абсорбера Ке — число Рейнольдса. Для [c.523]

    Обычно модели теоретических тарелок противопоставляется модель размыва хроматографического пика за счет вкладов различного рода диффузий адсорбата при его движении по хроматографической колонке [2, 3]. Основным допущением этой модели является относительная независимость вкладов различного рода диффузии (молекулярная диффузия, вихревая диффузия и медленный массообмен в хроматографической системе) в процесс размыва хроматографического пика. Очевидно, что такое допущение приводит к тому же способу [c.18]

    Аппараты, используемые для проведения процесса экстракции, называются экстракторами. Время пребывания жидкостей в них определяется в большинстве случаев скоростью переноса массы из одной фазы в другую за счет взаимодействующих между собой процессов молекулярной и конвективной диффузии. Именно поэтому процесс экстракции относится к классу массообменных процессов химической технологии. Причины возникновения диффузионного потока рассмотрены в 1.4.1. Скорость процесса молекулярной диффузии в жидкостях очень мала, поэтому основная функция аппаратов для проведения процесса экстракции заключается в том, чтобы максимально интенсифицировать процесс массопереноса. Принципы и способы такой интенсификации, вытекающие из теории массопереноса, которая подробно рассматривается в разделе 5, достаточно хорошо известны. [c.36]

    Турбулентная диффузия является следствием турбулентных пульсаций частиц потока, т. е. представляет собой чисто гидродинамическое явление. Для оптимальных условий работы массообменных аппаратов характерны режимы движения с изотропной турбулентностью, когда пульсации частиц одинаковы во всех направлениях. В качестве характеристики турбулентного потока используют путь смешения или масштаб турбулентности Ь и среднюю пульсационную скорость частиц потока и. Произведение этих величин по аналогии с молекулярной диффузией определяется как коэффициент турбулентной диффузии  [c.47]

    Имеющиеся в литературе данные по исследованию влияния молекулярной диффузии на массообмен в насадочных колоннах и при барботаже получены в основном в условиях абсорбции различных газов [15, 74, 75]. Прямые определения при ректификации в области средних концентраций весьма затруднительны из-за наличия зависимости коэффициента молекулярной диффузии от состава рабочих смесей. [c.102]

    Наконец, при понижении рабочего давления ректификации различие между коэффициентами молекулярной диффузии и Dy и между интенсивностями турбулизации парового и жидкого потоков увеличиваются, что способствует возрастанию диффузионного сопротивления массообмену в жидкой фазе. [c.115]

    Массообмен. Перенос массы в направлении поверхности соприкосновения фаз может происходить в результате молекулярной диффузии и конвекции, вызва.нной гидростатическими силами, течением потока или использованием перемешивающих устройств. Отдельный случай представляет собой движение турбулентного потока, в котором можно различить две зоны ламинарную (слой около поверхности соприкосновения фаз — пограничный слой) и турбулентную (в глубине фазы — ядро потока). В ламинарном слое вещество переносится главным образом молекулярной диффузией, а в турбулентной зоне в основном вследствие завихрений и флуктуаций локальной скорости движения потока. Считая, что в турбулентной зоне концентрация практически выравнивается, перенос массы в такой системе можно представить как молекулярную диффузию через пограничный ламинарный слой с эффективной (приведенной) толщиной. Перенос вещества до границы раздела фаз называется массоотдачей. [c.244]

    Вместе с тем такое распределение можно объяснять воздействпем молекулярной диффузии. Хотя диффузия в направлении потока обычно мала, поперечный диффузионный поток может привести к значительному снижению неоднородности, так как он способствует массообмену между различными струями (см. пример П1-3). [c.108]

    Из приведенной краткой характеристики следует, что для всех перечисленных процессов обпщм является переход вещества из одной фааы в другую, или массопередача. Переход вещества из одной фазы в другую связан с явлениями конпективного переноса и молекулярной диффузии, поэтому перечисленные выше процессы получили название массообменных, или диффузионных, процессов. [c.249]

    Зона небарботируемой жидкости I образуется между полотном тарелки и нижней границей открытых прорезей. Непосредственно через этот слой жидкости пар не проходит, поэтому массообмен в этой зоне малоэффективен. Он обусловлен главным образом молекулярной диффузией в слое жидкости, а также перемешиванием жидкости вследствие наличия градиента давления. [c.229]

    Высота зоны небарботируемой лшдкости равна расстоянию от днища тарелки до нижней границы открытой прорези. Через этот слой жидкости струйки паров ие проходят (отсутствует барботаж), и поэтому массообмен в этой зоне малоэффективен, так как протекает главным образом вследствие явления молекулярной диффузии в слое жидкости. [c.196]

    Массо- и теплообмен в колоннах с насадкой характеризуются не только явлениями молекулярной диффузии, определяющимися физическими свойствами фаз, но и гидродинамическими условиями работы колонны, которые определяют турбулентность потоков. В зависимости от скорости потока в колонне возможны три гидродинамических режима ламинарный, промежуточный и турбулентный,— при которых поток пара является сплошным, непрерывным и заполняет свободный объем насадки, не занятый жид1костью, в то время как жидкость стекает лишь по поверхности насадки. Дальнейшее развитие турбулентного движения может привести к преодолению сил поверхностного натяжения и нарушению граничной поверхности между потоками жидкости и пара. При этом газовые вихри проникают в поток жидкости, происходит эмульгирование жидкости паром, и массообмен между фазами резко возрастает. В случае эмульгирования жидкость распределяется не по насадке, а заполняет весь ее свободный объем, не занятый паром жидкость образует сплошную фазу, а газ — дисперсную фазу, распределенную в жидкости, т. е. происходит инверсия фаз. [c.302]

    Внутренняя задача теплообмена при нагреве жидких сред может отличаться крайней сложностью вследствие сочетания теплопроводности, конвекции и излучения. Некоторые жидкости (вода, масло, расплавленное стекло) обладают в световом диапазоне волн известной луче- прозрачностью, но практически большинство жидкостей нелучепрозрачны в тепловом диапазоне волн, который характерен для работы печей. Значительной теплопроводностью обладают только жидкие металлы коэффициент тейлопроводности неметаллов обычно не превышают 1—2 Вт/(м -К). В соответствии с указанным перенос тепла в неметаллической неподвижной жидкости мало интенсивен, и такое жидкое тело чаще всего относится к категории массивных тел. Массообмен в жидкой ванне в свою очередь оказывает влияние на перенос тепла. При наличии разности концентраций возникает процесс молекулярной диффузии при наличии разности температур— процесс термодиффузии в направлении градиента температур. [c.36]

    Скорость массообменных прдцессов, как правило, лимитируется молекулярной диффузией (см. ниже). Поэтому процессы массопередачи иногда называют диффузионными процессами. [c.383]

    Согласно этой теории причина размывания хроматографических полос обусловлена диффузией в газе и порах сорбента, а также массообменом между газом и неподвижной фазой. Сама диффузия имеет сложный характер. В реальной хроматографической колонке могут происходить следующие виды диффузии а) молекулярная диффузия, обусловленная тепловым движением молекул б) вихревая диффузия, вызываемая завихрением газа вокруг зерен насадки в) недостаточная скорость массопередачи из газовой фазы к поверхности неподвижной жидкости (в ГЖХ) или к поверхности твердого адсорбента (в ГАХ), обусловленное внешней диффузией, или замедленной внешнеди( узионной массопередачей недостаточная скорость миграции молекул адсорбированного вещества с поверхности неподвижной фазы внутрь неподвижной фазы, обусловленное замедленной внутренней диффузией или замедленной внутридиффузионной массопередачей. Последние два вида диффузии направлены поперек [c.52]

    В так называемой пленочной теории массообмена Льюиса и Уитмана (которой до последнего времени. пользовались ири исследовании диф-фузионных процессов) массообмен рассматривается как процесс, определяемый явлениями молекулярной диффузии но при этом не учитывается конвективный обмен, возникающий при взаимном течении двух фазовых потоков в колонных аппаратах. По этой теории возможность существования режима развитой турбулентности потоков в колонне исключается, поэтому и не указываются пути интенсификации диффузионной аппаратуры. [c.491]

    Массообмен между жидкостью и твердым телом широко используется в фармацевтической промьш1ленности для производства фитохимических препаратов из лекарственного растительного сырья. В отличие от непрерывных процессов массообмена, массообмен с твердым телом протекает в нестационарном режиме, при этом концентрация переходящего вещества изменяется как в объеме твердого тела, так и во времени. Сначала изменяется концентрация поверхностного слоя, а затем и внутренних слоев твердого тела. Движение веществ из глубины твердого тела к поверхности осуществляется за счет разности концентраций на поверхности и в глубине, и поскольку оно определяется скоростью молекулярной диффузии, то происходит довольно медленно. [c.269]

    При массообмене путем молекулярной диффузии количество газа йт, прошедшее через поверхность 5 за время т, согласно первому закону Фика пропорционально градиенту концентрации растворенного газа Сг1йх в направлении х, нормальном к поверхности переноса [86, 87] [c.30]

    При наличии в жидкости, в которой растут или растворяются пузырьки газовой фазы, значительных потоков, наряду с молекулярной диффузией может происходить конвективный массоперенос, увеличивающий скорость массообмена. Некоторые теоретические и экспериментальные исследования закономерностей конвективного массообмена между газовыми пузырьками и жидкостью выполнены в работах [67, 78, 99]. Однако экспериментальная проверка закономерностей роста или растворения отдельных пузырьков газа в жидкости в этих случаях достаточно затруднена и для расчетов используют обычно критериальные зависимости между обобщающими параметрами, описывающими процесс. Детальное обсуждение закономерностей массообмена в этом случае выполнено, например, в работах [77,79,81, 100] и составляет предмет изучения уже не столько газовых эмульсий, сколько массообмениых процессов. [c.42]

    Движущими силами молекулярной диффузии -го компонента в многокомпонентной смеси являются градиенты химических потенциалов всех компонентов V Xj (/=1, 2,. .., m), градиенты температуры VT и давления УР. Молекулярная диффузия, вызванная градиентами температур и давления, называется термодиффузией (эффект Соре) и бародиффузией соответственно. Вследствие ма-лости градиентов температур и давлений при массопередаче в системах газ — жидкость массообменных аппаратов далее будут рас смот рены только услоМйя изотермической и изобарической диффузии.  [c.45]

    Поток представляется как ряд соосных цилиндров, между которыми идет массообмен в радиальном направлении только за счет молекулярной диффузии. Для цилиндра с радиусом г и ири максимальной (осевой) скоростп и>ос м-с уравнение имеет вид [c.88]

    Массообмен через пограничные ламинарные слои осуществляется путем молекулярной диффузии. Поэтому в установившемся процессе можно записать (по первому закону Фйка) [c.140]


Смотреть страницы где упоминается термин Молекулярная диффузия и массообмен: [c.106]    [c.276]    [c.223]    [c.85]    [c.60]    [c.74]    [c.104]    [c.117]    [c.139]    [c.480]    [c.149]    [c.340]    [c.247]   
Массопередача (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Массообмен



© 2025 chem21.info Реклама на сайте