Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная диффузия теория

    Для вывода общего уравнения диффузии используется тот же метод, который применяется при выводе уравнения Навье-Стокса в гидравлике и уравнения Фурье в теории теплопередачи выделяют и пространстве параллелепипед, подсчитывают, сколько вещества поступит в него и уйдет из него через все его грани (по трем осям координат) за счет молекулярной диффузии и конвективного переноса и т. д. Опуская самый вывод, приводим уравнение в окончательном виде  [c.31]


    Молекулярно-кинетическая теория также позволяет делать предсказания относительно диффузии, вязкости и теплопроводности газов, т.е. так называемых транспортных свойств, проявляющихся в явлениях переноса. Каждое из этих явлений может условно рассматриваться как диффузия (перенос) некоторого. молекулярного свойства в направлении его градиента. При диффузии газа происходит перенос его массы от областей с высокими концентрациями к областям с низкими концентрациями, т.е. в направлении, обратном градиенту концентрации. Вязкость газов или жидкостей (иногда их обобщенно называют флюидами) обусловлена диффузией молекул из медленно движущихся слоев в быстро движущиеся слои флюида (и их торможением) и одновременной диффузией быстро движущихся молекул в медленно движущиеся слои (и их ускорением). При этом происходит перенос механического импульса в направлении, противоположном градиенту скорости движения флюида. Теплопроводность представляет собой результат проникновения молекул с большими скоростями беспорядочного движения в области с малыми скоростями беспорядочного движения молекул. Ее можно описывать как перенос кинетической энергии в направлении, противоположном градиенту температуры. Во всех трех случаях молекулярно-кинетическая теория позволяет установить коэффициент диффузии соответствующего свойства и дает наилучшие результаты при низких давлениях газа и высоких температурах. Именно эти условия лучше всего соответствуют возможности применения простого уравнения состояния идеального газа. [c.150]

    Механизм процесса переноса массы сводится к молекулярной и турбулентной диффузии. При молекулярной диффузии, происходящей в неподвижной фазе и ламинарном потоке, перенос массы характеризуется коэффициентом диффузии ), который рассчитывают по формулам (631)—для газов и (633)—для жидкости. При турбулентной диффузии перенос вещества осуществляется движущимися частицами среды и определяется гидродинамическим состоянием потока. Механизм переноса вещества через поверхность раздела фаз является кардинальным вопросом теории массопередачи и окончательно не решен. Предполагая, что диффузионные сопротивления в жидкой и газообразной фазах обладают свойством аддитивности, можно записать основное уравнение массопередачи  [c.336]

    Теория конвективной диффузии учитывает молекулярную диффузию, идущую как поперек слоя, так и в тангенциальном направлении, вдоль него, и дает для толщины диффузионного слоя следующее уравнение  [c.210]


    Если коэффициенты люлекулярной диффузии неизвестны, приближенные их значения можно найти с помощью методов, которые рассматриваются в литературе, приведенной в библиографии (см. стр. 147). Коэффициент молекулярной диффузии в газах пропорционален причем коэффициент пропорциональности является медленно возрастающей функцией температуры. Мы не будем здесь углубляться в теорию многокомпонентной диффузии. Примем коэффициент диффузии вещества в смеси равным В.. Хорошее приближение величины В можно получить по формуле, связывающей В с коэффициентами диффузии В. для каждой пары веществ А., А г. [c.131]

    Трактовка рассматриваемых явлений на основе прямого анализа системы дифференциальных уравнений, описывающих конвективную массоотдачу в системах твердая стенка—жидкость и газ—жидкость, дается теорией пограничного диффузионного слоя В этой теории учитывается сложность структуры турбулентности внутри вязкого подслоя, прилегающего непосредственно к поверхности раздела фаз. Весьма существенной является постепенность затухания турбулентных пульсаций в подслое. Вследствие этого, поскольку в жидкостях величина коэффициента молекулярной ди(М)узии Оа обычно во много раз меньше величины кинематической вязкости V (v/Dд > 1), турбулентные пульсации, несмотря на их затухание, играют существенную роль в переносе массы почти до самой границы фаз. Пренебречь их влиянием можно лишь в пределах подслоя, названного диффузионным , толщина которого в жидкостях значительно меньше толщины вязкого подслоя. В пределах этого диффузионного подслоя преобладающим является перенос молекулярной диффузией. [c.101]

    Движущей силой диффузии является градиент концентрации диффундирующего вещества С вдоль направления поры X, а поток вещества направлен в сторону уменьшения концентрации. Величина коэффициента молекулярной диффузии определяется как свойствами самого диффундирующего вещества, так и составом среды, в которой оно диффундирует. Подробный анализ процессов диффузии можно найти в монографиях по кинетической теории газов [4]. По [c.98]

    Изучая дисперсию вещества, впрыскиваемого в протекающий по трубе поток, Тейлор установил, что даже при отсутствии молекулярной диффузии, только вследствие неизбежной неравномерности профиля скоростей потока, создается неравномерное распределение концентраций по его сечению. Тейлор последовательно рассмотрел режимы ламинарного [14] и турбулентного [15] течений жидкости. Разработанная им теория объясняет рассеяние веществ в полых длинных трубах при протекании однофазного потока [76, 77]. [c.31]

    Первой гидродинамической моделью, предложенной для исследования процессов переноса, была модель, основанная на пленочной теории. Она предполагает, что вблизи поверхности раздела любой текучей среды имеется неподвижная пленка толщиной б, процессы переноса через которую происходят путем молекулярной диффузии. Условия в объеме рассматриваемой фазы должны быть постоянными с единственным исключением собственно пленки, так что общая движущая сила полностью используется явлением молекулярного переноса в пленке. [c.14]

    В пленочной теории переоценивается влияние молекулярной диффузии для рассмотренного случая, но эта переоценка наблюдается и при рассмотрении с позиций этой теории физической абсорбции. Конечно, когда уравнение пленочной теории [c.62]

    Коэффициент конвективной диффузии Е труднее поддается оиределению, чем В, ибо мы не располагаем возможностью настолько полно описать турбулентное движение среды, чтобы из такой теории вывести соотношения, подобные расчетным уравнениям молекулярной диффузии. Поэтому ныне принятая в химической технологии трактовка явления конвективной диффузии остается пока в значительной степени эмпирической, основанной на следующих положениях. [c.71]

    Коэффициент молекулярной диффузии вычисляется по уравнению кинетической теории газов  [c.138]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]


    Молекулярно-кинетическая теория газов предсказывает, что скорость эффузии (истечения) газа через небольшое отверстие должна быть обратно пропорциональна квадратному корню из скорости его молекул [уравнение (3-34)] предсказание подтверждается экспериментом. Эта теория также позволяет дать качественно правильное объяснение диффузии газов, их вязкости и теплопроводности. [c.157]

    Коэффициент массоотдачи в обобщении Данквертса зависит от коэффициента молекулярной диффузии в степени 0,5, как и в теории пенетрации, что следует из принятия обеими теориями одного и того же вида неустановившейся диффузии. Данквертс не предложил ни уравнений, ни экспериментальных методов для определения коэффициента /, что исключает возможность широкого применения его теории. [c.75]

    Теория Поттера (пограничных слоев). Поттер [77] рассматривает молекулярную диффузию в жидкости, двигающейся упорядоченно, принимая за основу выводов гидродинамические отношения, т. е. относительное движение ламинарных потоков, двигающихся в том же направлении. Для такой модели массо-перенос определяется коэффициентом диффузии О в степени п, изменяющейся в зависимости от отношения количеств фаз ЕЩ. Показатель степени. имеет значения в пределах =0,33 0,5  [c.78]

    Коэффициент диффузии может быть вычислен по формуле молекулярно-кинетической теории газов [c.348]

    Основной вопрос теории массопередачи заключается в том, что происходит на межфазной поверхности. При этом необходимо выявить впд механизма переноса вещества через межфазную поверхность — молекулярный (молекулярная диффузия) или турбулентный (вихревая диффузия . [c.236]

    Важную роль в технологических процессах играет, как известно, явление массопереноса, т. е. явление переноса массы вещества между двумя фазами. Существует несколько теорий процесса массопереноса через межфазную поверхность. Наибольшее распространение получила пленочно-пенетрационная теория, которая утверждает, что имеет место двойственный механизм диффузии. При малом времени контакта массообмен протекает как ряд неустановившихся процессов диффузии компонента от межфазной поверхности к элементарным вихрям сплошной фазы, соприкасающимся с поверхностью и проникающим в глубь сплошной фазы. При более длительном времени контакта действует механизм молекулярной диффузии через ламинарные пограничные пленки по обе стороны раздела фаз. [c.30]

    Несмотря на то, что теория двух пленок, предложенная Уайтменом— Льюисом, полезна при разработке абсорбционных систем, она заранее предполагает неподвижные пограничные слои и установившийся режим массопереноса, что крайне редко существует в реальных условиях. Так, например, газ стремится разрушить неподвижный слой, и к поверхности жидкости подходит турбулентный поток, тогда как жидкость в поверхностной пленке постоянно заменяется свежей жидкостью снизу. Чтобы исключить проблему диффузии в неустойчивом режиме, в частности, когда взаимодействие газ — жидкость кратковременно, Хигби предложил воображаемую модель, используя уравнение Стефана для молекулярной диффузии в колонне бесконечной высоты. [c.109]

    В соответствии с молекулярно-кинетической теорией идеальных газов коэффициенты нормальной и кнудсеновской диффузии выражаются аналогичными соотношениями  [c.236]

    Существенно, что коэффициент диффузии, а следовательно, и константа скорости обрыва цепей на стенке в диффузионной области, могут быть вычислены по формуле молекулярно-кинетической теории газов [c.296]

    Согласно пленочной теории массопередачи, по обе стороны поверхности раздела взаимно перемещающихся потоков (фаз) имеются пограничные слои с ламинарным характером движения. В этих пограничных слоях скорость поступательного движения жидкости убывает по прямолинейному закону. На границе раздела фаз скорость взаимного перемещения фаз равна нулю. Перенос вещества в пограничных слоях происходит относительно медленно, только за счет молекулярной диффузии. [c.300]

    На основании пленочной теории, согласно которой имеется линейная зависимость скорости массопередачн от коэффициента молекулярной диффузии, /п = 1. В соответствии же с теорией проникновения, независимо от вида функций распределения возрастов, элементов т — 0,5. Значит, из пенетрационной теории следует, что скорости массопереноса пропорциональны квадратному корню из коэффициента диффузии. Фридландер и Литт [13] при рассмотрении задачи массопереноса от твердой поверхности к ламинарному пограничному слою, при наличии мгновенной реакции, получили уравнение, напоминающее уравнение (5.14). При этом т= /з, чего и следовало ожидать, принимая скорость массопереноса в пограничных слоях пропорциональной величине коэффициента молекулярной диффузии в степени Va- [c.63]

    Исторически первой теорией массопередачн была пленочная теория Нерн-ета [1], предположившего, что к поверхности твердого тела прилегает неподвижный слой жидкости, массопередача в котором носит стационарный характер. Эти предположения сразу же приводят к выводу о линейном распределении концентрации в гипотетической пленке и прямой пропорциональности между потоком массьг (/) и коэффициентом молекулярной диффузии (О). Теория Нернста, однако, не дает возможности определить величину /, поскольку она не позволяет вычислить толщину плепки. [c.169]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]

    В связи с проблемой турбулентного переноса на границе твердое тело— жидкость Рукенштейн [24—26] предложил еще один своеобразный вариант теории обновления. Заметив, что наблюдаемая в некоторых экспериментах зависимость коэфф щиеита массопередачн от коэффициента молекулярной диффуз т имеет тот же вид, как и в случае ламинарного обтекания плоской пластинки (к Рукенштейн предположил, что на границе раздела имеется ламинар- [c.174]

    Понимая, что теория проницания в своем первоначальном виде непригодна для описания массообмена при турбулентном движении фаз, Коларж [29, 30] предпринял попытку связать время контакта т с характеристическими параметрами турбулентности в потоке, обтекающем твердую поверхность. Основной постулат теории Коларжа состоит в допущении, что перенос массы и тепла с твердой поверхности в объем лимитируется сопротивлением турбулентных пульсаций масштаба Яо, равного внутреннему масштабу турбулентности (т. е. такому критическому размеру турбулентных пульсаций, при котором начинают сказываться вязкие силы). Если предположить, что турбулентные вихри масштаба вплотную подходят к стенке и что перенос внутри таких вихрей осуществляться посредством нестационарной молекулярной диффузии, то для коэффициента массоотдачи получится выражение  [c.175]

    Дальнейшее развитие идеи Буссенеска связано с работой Хигби [57], которая сыграла большую роль в развитии теории межфазного обмена. Хигби рассматривал молекулярную диффузию вещества, направленную перпендикулярно к слою жидкости, обтекающую каплю. Задача сводится к решению уравнения диффузии [c.207]

    Подоб гоо распространение результатов кинетической теории диффузии в газах на жидкузо фазу пе вполне надежно, однако мы еще пе располагаем другим, более эффективным сродством для ренгеыия вопроса о механизме молекулярной диффузии в жидкостях. [c.66]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Зависимость, приведенная для коэффициента турбулентного обмена, аналогична зависимости для коэффициента молекулярной диффузии D= 3lav, где /о—длина пути свободного пробега молекулы, а и — средняя скорость молекулы. Если I не превосходит глубину фронта пламени в ламинарном потоке бн, то поверхность пламени должна остаться гладкой , однако, как оказалось, и в этом случае наличие турбулентности интенсифицирует обменные процессы. Величина 5н равна примерно 1 мм. Теория рассматривает поверхностное горение турбулентных объемов газа, когда 1<8 , и объемное горение, когда [c.166]

    Согласно теории Уитмана и Льюиса, в ядре потока концентрахщя постоянная и процесс переноса описывается одномерным стационарным уравнением молекулярной диффузии в тонких пленках при условии фазового равновесия на границе раздела жидкость - жидкость или жидкость - газ. Скорость массопередачи по каждой из фаз определяется выражением (4.3), в котором частные коэффициенты массопередачи равны К1 =1)1/61 и К2 =02182, где >1, /)2, 51, 2 - коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 4.1). Пленочная теория не дает методов для определения толщин пленок 5, и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.173]

    Теория Кишиневского. Она отличается от теории Данквертса тем, что наряду с коэффициентом молекулярной диффузии О вводится коэффициент конвективной диффузии О. По Кишиневскому [59], коэффициент массоотдачи опредепяется следующим уравнением  [c.76]

    Согласно этой теории (рис. 11-10), распределяемое вещество переносится из ядра потока жидкости к границе раздела фаз непосредственно потоками 5КИДК0СТИ и молекулярной диффузией. При этом воспринимаю-щая распределяемое вещество фаза счиаается либо твердой, либо близкой к ней (по способности гасить турбулентные пульсации потока). В рассматриваемой системе поток можно считать состоящим из двух частей ядра и граничного диффузионного слоя. [c.267]

    Эйнштейн и Смолуховский, постулируя единство природы броуновского и молекулярно-кинетического движения, установили количественную связь между средним сдвигом частицы (называемым иногда амплитудой смещения) и коэффициентом диффузии О. Выведенное ими соотношение между этими величинами получило название закона Эйнштейна — Смо.духовского. При выводе этого соотношения авторы исходили нз следующего положения. Если броуновское движение является следствием теплового движения молекул среды, то можно говорить о тепловом движении частиц дисперсной фазы. Это означает, что дисперсная фаза, представляющая собой совокупность числа частиц, должна подчинят11Ся тем же статистическим законам молекулярно-кинетической теории, что и газы или растворы. Из этих законов был выбран закон диффузии, согласно которому хаотичность броуновского движения дол- [c.204]

    Напомним ход выводй соотношений молекулярной диффузии (по элементарной кинетической теории). Диффузия и другие явления переноса в газах (вязкость, теплопроводность) связаны с тепловым движением молекул. В установившемся равновесном состоянии распределение скоростей молекул газа отвечает распределению Максвелла (газы в дальнейшем будем рассматривать как идеальные). Средняя тепловая скорость молекул при максвелловском распределении [c.63]


Смотреть страницы где упоминается термин Молекулярная диффузия теория: [c.170]    [c.170]    [c.174]    [c.151]    [c.72]    [c.195]    [c.220]    [c.393]    [c.373]    [c.164]    [c.518]    [c.20]    [c.19]   
Массопередача (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Диффузия теория



© 2025 chem21.info Реклама на сайте