Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пуриновые основания, определение как оснований

    КОН, а в надосадочной жидкости предварительно определяли пуриновые и пиримидиновые основания путем хроматографии на бумаге с использованием соответствующих стандартов (рис. 16). Для получения количественных данных регистрировали УФ-спек-тры поглощения хроматографических проб и сравнивали их со спектрами стандартных проб, содержащих определенное количество оснований (рис. 17, а—г). В табл. И приводятся концентрации оснований, содержащихся в конечном продукте реакции. [c.51]


    В тот вечер Фрэнсис и Гриффит недолго занимались пережевыванием избитых гипотез. Оба понимали, что сейчас важно установить природу этих сил притяжения. Фрэнсис убежденно доказывал, что специфические водородные связи не могут быть решением проблемы. Они не могут обеспечить необходимую строгую специфичность, потому что, как нам не раз говорили наши приятели-химики, атомы водорода в пуриновых и пиримидиновых основаниях не имеют определенного местоположения, а случайным образом перемещаются с одного места на другое. Фрэнсис предполагал, что вместо них в копировании ДНК участвуют специфические силы притяжения между плоскими поверхностями оснований. [c.75]

    Что касается содержания в РНК пиримидиновых и пуриновых оснований, то, по данным Чаргаффа, для этого вида НК также имеются определенные закономерности  [c.263]

    Достигнут определенный прогресс в объяснении хорошо известной разницы в скоростях гидролиза гликозидной связи рибо-и дезоксирибонуклеозидов. Первые более стабильны, чем последние в каждом классе соединений, пуриновые основания отщепляются гораздо быстрее пиримидиновых. Сейчас доступны некоторые кинетические данные для обычных нуклеозидов в широком интервале pH, и эти данные могут быть объяснены в рамках механизма, включающего предравновесное протонирование гетероциклического кольца с последующей скорость-лимитирующей ионизацией гликозидной связи, но не (как рассматривается в большинстве учебников) через промежуточные основания Шиффа с последующим начальным протонированием атома кислорода углеводного кольца схема (38) [132, 133]. [c.110]

    Полинг и Кори [1593] предложили первую достаточно определенную модель — модель спирали, состоящей из трех цепей, каждая из которых содержит сахар, фосфатный ион и пуриновое или пиримидиновое основание. Эти цепи закручены вокруг одной оси, и молекула имеет примерно цилиндрическую форму. Сердцевину цилиндра образуют фосфатные группы, причем их соединяют Н-связи и кольца сахара (рибофуранозы). Пуриновые или пиримидиновые кольца связаны с внешней частью сахаров. Уотсон и Крик [2144] построили модель дезоксирибонуклеиновой кислоты (ДНК) с П-связью, которая, по-видимому, несколько лучше согласуется с экспериментальными данными. Схематически эта модель изображена на рис. 94. [c.273]

    В области биохимии Гроссман и др. [78] нашли, что структура термически денатурированной и облученной ультрафиолетовым светом дезоксирибонуклеиновой кислоты (ДНК) согласуется с гипотезой, Б соответствии с которой денатурированная ДНК благодаря внутримолекулярным водородным связям с участием аминогруппы пуриновых и пиримидиновых оснований существует в виде хаотически свернутой спирали. Для определения структуры ДНК были изучены реакции денатурации, реактивации и ультрафиолетовое облучение. Было найдено, что быстрое охлаждение после термической денатурации способствует образованию межмолекулярных водородных связей. При повторном нагревании до 45° эти связи могут опять разрушиться. Образование межмолекулярных водородных связей при быстром охлаждении может быть ингибировано формальдегидом, который реагирует с аминогруппами оснований. [c.222]


    Общие сведения. Свойство пуриновых и пиримидиновых оснований интенсивно поглощать ультрафиолетовые лучи в зоне 260 ммк используется для определения НК спектрофотометрическим методом. Высокая чувствительность, специфичность, на- [c.32]

    Мы предложили метод прямого определения суммы НК по пуриновым основаниям, извлеченным из серебряного комплекса, [c.37]

    В работах Штейнера [П и Т. М. Бирштейн [ ] было теоретически исследовано влияние ионизации оснований на переход спираль — клубок в полинуклеотидной цепи, а также влияние такого перехода на кривые титрования, т. е. кривые зависимости степени ионизации а макромолекулы от величины pH раствора. Предположим, по-прежнему, что нуклеотидные, остатки двух цепей могут соединяться друг с другом единственным образом и не будем учитывать гетерогенности состава молекулы. Каждая пара оснований молекулы может находиться в одном из трех состояний состояние О—пара мономерных единиц не связана водородной связью и не заряжена, состояние О —пара мономерных единиц не связана водородной связью и заряжена, состояние 1—пара мономерных единиц связана водородной связью и не заряжена. Поскольку ионизацию, не сопровождаемую разрывом водородной связи, мы считаем невозможной, состояние 1, в котором пара мономерных единиц заряжена и связана водородной связью, не рассматривается. Мы приписываем здесь каждой паре оснований одно заряженное состояние, поскольку константы ионизации групп —К Нг и —NH—СО— сильно различаются, так что области титрования этих групп не перекрываются, и их можно рассматривать независимо. Будем в дальнейшем для определенности считать, что заряжается кислотная группа —NH—СО—, т. е. речь идет о щелочной области pH. Ионизацию фосфатных групп мы по-прежнему не учитываем, так как в рассматриваемом диапазоне pH состояние их ионизации не меняется. Энергия электростатического взаимодействия фосфатных групп с зарядами пуриновых и пиримидиновых оснований, являющаяся функцией ионной силы раствора, может быть введена в константу ионизации этих оснований. [c.373]

    Количественное определение мочевой кислоты в моче, как и в крови, приобретает большое значение при изучении пуринового обмена. В организме непрерывно происходит распад нуклеопротеидов и это приводит к образованию известного количества мочевой кислоты эндогенного происхождения, являющейся у человека конечным продуктом окисления пуриновых оснований. Обильное потребление пищи, содержащей нуклеопротеиды, вызывает в течение некоторого времени увеличенное выделение с мочой мочевой кислоты экзогенного происхождения. [c.462]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Б газах 3492, 4030, 5219, 5405, 5940 в навозной жиже 7997 в пищевых продуктах 7835 в почвах 5569, 6603 в продуктах сахарного производства 6583 в стали 3482, 3693, 4107, 4194, 4723, 4737 в ферросплавах 3482 в цианамиде кальция 5897 прибор для его определения 2118, 2154 Азот аминный, см. аминокислоты и азот белковый Азот белковый, определение 8246, 8413 см. также аминокислоты Азот нитратный, опредапение 2857, 3584, 4041, 5532 Азот пуриновых оснований, определение 7462 Азот технический, определенна содержания О2 5656 Азота двуокись определение в воздухе 4203, 4650, 5196, 5360 [c.347]

    Пудра алюмо-окисная, определение РЬ 5424 Пульпа флотационная, определение pH 725 Пуриновые основания, определение N 7462 Пух хлопковый, определение влажности 7842 определение зольности 7844 отбор средних образцов 2526 Пчелы, исследование на As 5006 Пылесчетчик центробежный 2152 Пыль [c.381]

    Пуриновые и пиримидиновые основания сильно поглощают в ультрафиолетовой области спектра благодаря наличию я-электронов, Ятах 260 нм (6260 нм 10 ) ДЛЯ ббЛКОБ 1тах 280 НМ. Положение максимума поглощения зависит от структуры основания (отсюда следует, что и от pH раствора, поскольку с изменением pH преобладают различные таутомерные формы), от введения в гетероциклическое ядро заместителей, но незначительно— от структуры сахарного остатка. Такие свойства полезно знать при синтезе пуриновых и пиримидиновых производных, так как их можно характеризовать соответствующими максимумами поглощения в ультрафиолетовых спектрах, а при хроматографическом определении также идентифицировать по поглощению в ультрафиолетовой области, например для Ы-бензоилгуано-зина (синтезируемого бензоилированием основания и сахарного остатка нуклеозида бензоилхлоридом в пиридине с последующим удалением бензоильных групп с сахарного остатка гидроксидом натрия)  [c.113]


    Факторы роста. Некоторые микроорганизмы не могут синтезировать в достаточных количествах органические вещества (аминокислоты, пуриновые и пиримидиновые основания, витамины), необходимые для построения нового клеточного материала. Поэтому для обеспечения его роста в среду надо вводить недостающее вещество, которое называется фактором роста. Микроорганизм, нуждающийся в каком-то определенном факторе роста, называют ауксотрофным по этому соединению, а микроорганизм, не нуждающийся в данном веществе, называют проготрофным. [c.283]

    Цепи выстраиваются в противоположных направлениях и удерживаются вместе водородными связями, образующимися между пуриновыми и пиримидиновыми основаниями. Водородные связи образуются лишь между определенными основаниями А=Т (соединены двумя водородными связями) Г=Ц (соединены тремя водородными связями). Такие пары оснований называются комп-лементарны-гли парами (рис. 26). [c.663]

    По хим. св-вам Г,-типичная алифатич. а-аминокислота. Количеств, определение основано на образовании окрашенных продуктов с о-фталевым альдегидом (р-ция Циммермана). В составе белков встречается чаще, чем др. аминокислоты. Служит предшественником в биосинтезе пор-фириновых соед. и пуриновых оснований. Г.-кодируемая аминокислота, заменимая его биосинтез осуществляется переамииированием глиоксиловой к-ты, ферментативным расщеплением серина и треонина. Синтезируют Г, из хлоруксусной к-ты и NH3. В спектре ЯМР в DjO хим. сдвиг протонов группы [c.587]

    Ф. р. и ее варианты применяют для обнаружения и фотометрич. определения фенолов, тиолов и дисульфидов (цисти-на, цистеина), пуриновых оснований (гуанина, ксантина, [c.113]

    В щелочных условиях реакции с гидразином и гидроксиламииом приводят к расщеплению гетероциклическ11Х колец пиримидинов (см. с. 325), практически не затрагивая пуриновых оснований. Реакция ДНК с гидразином, сопровождающаяся расщеплением по пиримидиновым звеньям, используется при определении нуклеотидной последовательности ДНК в методе Максама — Гилберта. [c.386]

    Р. Фолина — водный раствор Hj[P(W20 )g] и H [P(Mo207)g]. Используют для качественного и количественного определения фенолов, белков, содержащих тирозин или триптофан, пуриновых оснований и гликопротеинов. Перечисленные соединения при нагревании с реактивом Фолина образуют продукты, окрашенные в сине-зеленый цвет. [c.254]

    Пуриновые основания в человеческой моче. П. Полуколичест-венное определение и введение в них изотопов [1825]. [c.311]

    ФОЛИ НА РЕАКТИВ, водный р-р H7[P(W,07)e] и Hj[P(MoiOi)6]. Примен. для обнаружения и фотометрич. определения фенолов, белков, содержащих тирозин или триптофан, пуриновых оснований (гуанина, ксантина, [c.625]

    В твердой форме эта кпслота обладает кристаллическим строением (что подтверждается четкой картиной диффракцни рентгеновских лучей), высокой плотностью и может быть вытянута в нити. Несколько лет назад Астбери [114] предложил для дезоксирибонуклеиновой кислоты плотно упакованную структуру, в которой остатки дезоксирибозы и основания находятся в слоях, разделенных фосфатными связями. Сравнительно недавно Уотсон и Крик [115] предложили модель двойной спирали, в которой две спирали переплетаются таким образом, что последовательность остатков в одной спирали противоположна их пос-ледовятрльности в другой. Основания могут быть расположены в такой структуре только определенными парами, по одному на каждой спипяли при этом дня пуриновых основания слишком велики, чтобы пара нз ннх могла разместиться в этой структуре, а два пиримидиновых основания слишком малы. При наличии определенных доказательств было принято, что противоположным компонентом в паре оснований для аденина может быть только тимин, а для гуанина — цитозин. Предполагается, что водородные связи между парами оснований обеспечивают стабильность спиральной структуры дезоксирибонуклеиновой кислоты. Предполагаемое строение ее показано на рис. 46. [c.250]

    В работах [63—65] были измерены температуры плавления других биологически важных макромолекул, синтетических полинуклеотидов и природных нуклеиновых кислот. В упорядоченном состоянии молекула дезоксирибонуклеиновой кислоты состоит из двух спирально переплетенных цепей. Кристаллографическая структура, определенная Криком и Уотсоном [66], допускает только один способ образования пар гетероциклическими основаниями, входящими в состав каждой из этих цепей. Анализ состава нуклеиновых кислот показывает, что концентрация пуриновых оснований равна концентрации пиримидиновых оснований поэтому образование пар через водородную связь, по статистическим соображениям, возможно только между адени-ном (А) и ТИМИНОМ (Т), и между гуанином (Г) и цитозином (Ц). При плавлении цепи разделяются и переходят в беспорядочно свернутое состояние. [c.134]

    Переносчики электронов в дыхательных цепях живых организмов, убихиноны [63], и кофакторы ферментов [64] хиноидной структуры легко подвергаются окислительно-восстановительным превращениям на пирографитовых электродах. Нуклеотиды, содержащие пурины, флавинадениндинуклеотид, флавинмононук-леотид, также окисляются на углеродных материалах [65]. Это позволяет проводить одновременное определение пуриновых оснований и их нуклеозидов. В работе [66] предложено измерять микромолярные концентрации НАДН (никотинамидаденинди-нуклеотид) на стеклоуглероде. [c.113]

    В основу книги Методы биохимии и цитохимии нуклеиновых кислот растений положены методы и схемы исследований нуклеиновых кислот, разра1ботавные или усовершенствованные в нашей ла боратории. Сюда следует отнести 1) схему анализа нуклеиновых кислот с одновременным определением других фосфорных соединений 2) количественный анализ нуклеиновых кислот по пуриновым основаниям 3) схему фракционного экстрагирования нуклеиновых кислот для выявления гетерогенности ДНК и РНК 4) обнаружение, получение и определение количественного соотношения фракций лабильной, стабильной [c.3]

    Последовательно расположенные нуклеотиды в молекулах ДНК и РНК ковалентно связаны друг с другом при помощи фосфатных мостиков . 5 -гидрок-сильная группа пентозы одного нуклеотида присоединена к 3 -гидроксильной группе пентозы соседнего нуклеотида с помощью фосфодюфирной связи (рис. 27-5). Таким образом, ковалентные остовы нуклеиновых кислот состоят из монотонно чередующихся фосфатных и пентозных групп основания же можно рассматривать как боковые группы, присоединенные к остову на равных расстояниях друг от друга. Отметим также, что сахарофосфатный остов и ДНК, и РНК несет заряд, поскольку фосфатные группы являются кислыми и при характерных для клеток pH заряжены отрицательно. Вместе с тем пуриновые и пиримидиновые основания, которые плохо растворимы в воде, гидрофобны. Укажем также, что цехш ДНК и РНК обладают определенной полярностью, цли направлением, поскольку все межнуклео-тидные фосфодиэфирные связи ориентированы вдоль цепи одинаково (рис. 27-5). Благодаря этой полярности каждая по-линуклеотидная цепь имеет 5 -конец и 3 -конец. [c.856]

    Как и в случае полипептидных цепей, величина температурного интервала перехода зависит, с одной стороны, от теплоты перехода — ДЯ, а с другой — от параметра кооперативности Величина —Д// может быть непосредственно измерена калориметрическим путем, а также оценена из зависимости температуры перехода от концентрации водородных ионов (см. 31). Калориметрические измерения, выполненные Стертевантом, Райсом и Гейдушеком [ 2] на ДНК спермы кашалота, подвергнутой кислотной денатурации при pH = 2,5, температуре 25°С и ионной силе раствора 0,1 М, дали теплоту перехода 5 ккал молъ на пару оснований. Для определения теплоты плавления ДНК в нейтральной среде к этой величине следует добавить теплоту ионизации пуриновых и пиримидиновых оснований, сопровождающей кислотную денатурацию ДНК (см. 31). Оценка этой последней величины была проведена Де Во и Тиноко [ ], которые, исходя из теп- [c.370]

    Определению нуклеотидного состава нуклеиновой кислоты тем или иным методом должен предшествовать ее гидролиз. РНК и ДНК можно гидролизовать до входящих в них оснований обработкой 98%-ной муравьиной кислотой при 175° в течение 30 мин или 12 н. хлорной кислотой при 100° в течение 1 час [8, 9]. Ни один из этих методов не является строго количественным, поскольку в первом случае наблюдается низкий выход урацила, а во втором — разрушение части тимина. ДНК можно гидролизовать также обработкой 6 н. НС1 при 120° в течение 2 час, однако при этом теряется часть пуринов [25]. Удовлетворительный гидролиз РНК до смеси пуриновых оснований и пиримидиновых нуклеотидов достигается в результате нагревания с 1 н. соляной кислотой при 100° в течешге 1 час [5]. Количественный гидролиз РНК до нуклеозид-З -фосфатов легко вызвать обработкой 0,3 н. NaOH при 37° в течение 16 час. Следует избегать употребления слишком крепкой щелочи, чтобы не вызвать дезаминирования цитидиловой [c.29]

    Поглощение в ультрафиолете дает возможность идентифицировать различные пуриновые и пиримидиновые основания. Водный раствор каждого пуринового и пиримидинового основания и нуклеозида обладает определенным спектром поглогцения, который специфически изменяется в зависимости от величины pH [c.35]

    Методы разрушения ДНК, необходимые для определения последовательности нуклеотидов, были разработаны Чаргаффом и его сотрудниками [22, 72, 73], Бартоном [48, 74, 75, 82] и некоторыми другими авторами [76, 85]. При этом оказалось, что расщепление ДНК в кислой среде дает лучшие результаты по сравнению с регулируемым разрушением ДНК дезоксирибонуклеазой. Под действием разбавленной минеральной кислоты из молекулы Д]ЗК удаляются пуриновые основания. Полученный в результате полимер представляет собой исходный полинуклеотид, в котором на месте пуриновых нуклеотидов находятся дезоксирпбозные остатки, а ниримидиновые нуклеотиды расположены так же, как в исходной ДНК. Это соединение получило название апуриновой кислоты. В ходе ее образования удаление пуринов высвобождает реактивные альдегидные группы дезоксисахара со свободными гидроксильными группами при С-4. Таким образом полимер приобретает значительную чувствительность к щелочам и к слабо щелочным буферам, содержащим первичные аминогруппы. Подобного рода разрушение ДНК достигается при использовании дифениламина в кислой среде. [c.80]

    ДНК — это тот материал, из которого состоят гены. Нить ДНК состоит из большого количества молекул дезоксирибозы, линейно связанных фос-фодиэфирными связями в 3 - и 5 -положениях молекулы сахара. Каждая молекула дезоксирибозы связана в положении Г с пурином или пиримидином. Таким образом, полинуклеотидная цепь представляет собой длинный остов, состоящий из остатков сахара и фосфатных групп, соединенных с пуриновыми основаниями — аденином (А) и гуанином (Г) и пиримидиновыми основаниями — цитозином (Ц) и тимином (Т), расположенными вдоль основной оси молекулы через строго определенные интервалы. Однако нить ДНК представляет собой не одинарную цепь, а двойную, в которой расстояние между осями цепей всегда поддерживается постоянным благодаря тому, что А из одной цепи всегда связывается только с Т из другой цепи, а Г — с Ц. Эти взаимодействия определяются размерами и формами оснований, составляющих каждую пару оснований. Возникающие при этом водородные связи определяют структурную стабильность ДНК- Однако в соответствии со знаменитой моделью Уотсона — Крика эти две цепи ДНК не просто тянутся вдоль друг друга, подобно железнодорожным рельсам, а закручены относительно друг друга, образуя периодическую двойную спираль пары оснований при этом располагаются в плоскости, перпендикулярной оси спирали. Случайный характер распределения четырех оснований вдоль цепи ДНК мог бы привести к возникновению астрономически боль- [c.69]

    Подагра. Подагру (греч. pous — нога и agrios — тяжкий, жестокий) издавна связывали с определенными условиями питания и, в частности, с преобладанием в диете мясной пиш,и. Действителъно, избыточное потребление продуктов, богатых пуриновыми нуклеотидами и доставляю-Ш.ИХ, помимо этого, аминокислоты, из которых организм синтезирует пуриновые и пиримидиновые основания, создает благоприятные условия для увеличенного накопления нуклеиновых производных в организме. [c.374]

    Нарушения синтеза. Существуют, по-видимому, еще некоторые за-болемния, которые следует поставить в связь с нарушениями в обмене нуклеиновых кислот. Примером такого рода заболеваний может служить пернициозная анемия (злокачественное малокровие). Витамин В а, а также фолиевая кислота оказывают определенный лечебный эффект при пернициозной анемии. В настоящее время имеется ряд факторов, которые указывают на участие фолиевой кислоты (стр. 181) и витамина Bj2 (стр. 183) в биосинтезе нуклеиновых кислот. Было показано, что молочнокислые бактерии находятся в оптимальных условиях развития также и в том случае, если в питательной среде витамин Bjg замещен тимидином (тиминдезокси-рибозидом) или ТИМИНОМ. На основании этого было высказано предположение о том, что витамин Bj2 играет коферментную роль в биосинтезе тимина или тимидина. Известно далее, что фолиевая кислота усиливает синтез тимина в тканях. При недостаточности названных двух витаминов нарушается также использование гликокола, серина и муравьиной кислоты для синтеза пуриновых оснований. [c.398]


Библиография для Пуриновые основания, определение как оснований: [c.283]   
Смотреть страницы где упоминается термин Пуриновые основания, определение как оснований: [c.190]    [c.232]    [c.106]    [c.126]    [c.424]    [c.625]    [c.378]    [c.546]    [c.190]    [c.291]    [c.291]    [c.125]    [c.142]    [c.234]   
Титрование в неводных средах (1971) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Основание определение

Пуриновые



© 2024 chem21.info Реклама на сайте