Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теллур обнаружение

    Теллур и полоний. Теллур обнаружен в живых организмах. Норма его содержания в тканях и органах не установлена. [c.367]

    Т1 таллий 1861 В. Крукс (Англия) Обнаружен спектральным методом при анализе отходов от производства теллура. В виде [c.170]

    Определение натрия в теллуре [122]. Метод применен для определения 5-10 —2-10 % натрия в техническом теллуре, предел обнаружения натрия З-Ю %. Эталоны готовят механическим смешиванием мелкодисперсных порошков чистых металлов с теллуром повышенной чистоты. Вначале примеси вводят в концентрации 0,1 — 1%, затем разбавляют в 10 раз чистым теллуром. После тщательного перемешивания и растирания стандартную смесь порошков применяют в дальнейшем для приготовления эталонов. Пробы и эталоны теллура смешивают с графитовым порошком в соотношении 5 1 и помещают в тонкостенные графитовые злектроды диаметром 3 мм и глубиной 2 мм. Помимо натрия, метод позволяет определять (с пределом обнаружения 10 —10" %) Ag, ВЬ, Mg, Сч, Р1, Ли, 81, А1, Ге, №, В1, 8п, 8Ь, РЬ, 1г, Ки, Са, Ва и 8е. При определении 5- 10 —2-10 % натрия выбрана аналитическая линия натрия 330,23 нм, линия сравнения теллура 317,51 нм при определении 5- 10 —2-10 % натрия интенсивность линии 588,995 нм измеряют относительно фона. Спектры фотографируют на спектрографе ИСП-28 с трехлинзовой системой освещения, источник возбуждения — дуга переменного тока, сила тока 2 А, экспозиция 30 с. Используют панхроматические пластинки или негативную фотопленку. [c.103]


    Определение натрия в теллуре [493]. Метод позволяет определять 1-10 —натрия в теллуре после отделения основы в виде ТеОа в среде 0,5—1 М НКОз. Вместе с натрием концентрируются л могут быть определены Ре, А1, Си, Ад, Аз, РЬ, Мд, Са, 2п, С(1, 1п, Т1, Мп, Со, N1 и Сг. Предел обнаружения зависит от прибора, он равен 5-10 и 1,5-10 % при регистрации спектров на спектрографах ИСП-28 и ДФС-8 соответственно при использовании аналитической линии натрия 588,995 нм и возбуждении спектра в дуге переменного тока силой 12 А. Относительное стандартное отклонение равно 0,15—0,30. [c.109]

    Методом полярографии можно определять содержание элементов, способных окисляться на аноде или восстанавливаться на катоде. Полярографический метод анализа характеризуется достаточно низким пределом обнаружения, который составляет 10 моль/л. Метод является достаточно избирательным и позволяет определять содержание нескольких элементов, одновременно присутствующих в растворе. Его используют для определения меди, цинка, кадмия, свинца, теллура и других элементов в различных продуктах производства цветной металлургии. [c.42]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    Значительное снижение пределов обнаружения (в 20— 50 раз) элементов с высокой энергией ионизации (фосфора, ртути, мышьяка, цинка, теллура, кадмия, бериллия) в атмосфере аргона по сравнению с пределами обнаружения в воздухе установлено в работе [233]. На торцевую поверхность графитовых электродов, пропитанных полистиролом, наносили анализируемые растворы, высушивали и сухой остаток испаряли в дуге постоянного тока силой 10 А. [c.127]


    Камерный электрод аналогичной конструкции, отличающийся большим объемом полости, был применен при определении теллура в рудах -(предел обнаружения теллура при иодировании пробы составлял 3-10 %) [854]. [c.141]

    Селен (8е) —элемент темно-серого цвета с коричневым оттенком. Впервые обнаружен Берцелиусом в 1817 г. в отходах сернокислотного производства. Новое вещество имело свойства, сходные со свойствами теллура, и названо селеном (греческое название Луны), так как он встречается вместе с теллуром, открытым ранее и названным в честь Земли. [c.349]

    Аналогичные методики использовались и для обнаружения в воде очень низких (1 пг) содержаний олова, свинца и ртути [61, 63]. При газохроматографическом определении химических форм нахождения олова в морской воде (моно-, ди- и трифенилолово, моно-, ди- и трибутилолово и неорганические соединения олова) МОС восстанавливают до соответствующих гидридов, продувают воду гелием высокой чистоты и улавливают гидриды на силанизированном хромосорбе GAW [64]. Предел обнаружения равен 0,02—10 мг/л. Определение летучих МОС тяжелых металлов (сурьма, висмут, мышьяк, ртуть, теллур, свинец и олово) в природных и антропогенных экологических пробах методом ГХ/МС/ИНП чаще всего осуществляется после превращения их в гидриды или алкильные соединения [66]. [c.583]

    Метод отличается высокой чувствительностью, и его можно применять для открытия подавляющего большинства катионов. В частности, флуоресцентным методом можно открыть серебро, таллий, ртуть, свинец, кадмий, висмут, мышьяк, олово, теллур, ванадий, цирконий и др. Так, например, теллур может быть обнаружен по исчезновению красной флуоресценции родамина в нейтральном или кислом растворе. Открываемый минимум [c.125]

    Прп использовании гидридного генератора в методе АФС достигнут предел обнаружения теллура 0,0001 мкг[48], однако этот метод имеет ряд ограничений [49]. [c.215]

    Калибровочные графики для обоих элементов были линейными в интервале 0—5 мг элемента в пробе. Анализ сплава, содержащего вольфрам и молибден, приведен в табл. VII.4. Пределы обнаружения в работе [172] не указаны, однако, судя по приведенным калибровочным кривым, они составляют около 0,02 л г для каждого элемента. В этой же работе аналогичным методом определяли также серу, селен, теллур, уран и рений. [c.100]

    Чувствительность реакции не уменьшается в присутствии ионов элементов Си, Сс1, Аз, 5Ь, Зе, Мо, V и Т1 при предельном отношении 100 1. В присутствии меди рекомендуется прибавлять цианид калия (см. реакцию А). Ионы элементов Ад, Нд (Нд2+) и Аи реагируют аналогично висмуту ион Нд " мешает, образуя черный осадок с едким кали. Платина вызывает оранжевую окраску раствора, которая мешает обнаружению висмута. Теллур также мешает открытию висмута в присутствии иона ТеО спустя несколько минут образуется черный осадок, в присутствии ТеО восстановление идет моментально, даже в кислой среде, и предшествует реакции с висмутом. [c.31]

    V и Т1 при предельном отношении 100 1. В присутствии серебра необходимо добавлять избыток соляной кислоты. Ионы Hg и Hg2+ при больших предельных отношениях (10 1 и 100 1) мешают в количестве, равном количеству мышьяка, ионы ртути не оказывают влияния на чувствительность реакции. Теллур при предельном отношении 100 1 мешает обнаружению мышьяка при отношении 10 1 он снижает чувствительность реакции до 10-3(1 103). [c.38]

    Для обнаружения серы, селена и теллура служит гепариновая проба. Любые серусодержащие соединения можно восстановить углем при нагревании с содой с образованием сульфидной серы. Расплав помещают на глад- [c.37]

    При введении в некоторые нелюминесцирующие кристаллы примесей других элементов (активаторов) они проявляют характерную люминесценцию. Эти вещества называют кристаллофосфорами. По интенсивности люминесценции кристаллофосфоров находят элементы-примеси. Так, можно приготовить кристал-лофосфоры на основе оксида кальция и определить примесь селена и теллура по красной люминесценции, таллия(1)—по желто-зеленой, висмута(111) — по сине-фиолетовой с достаточно низким пределом обнаружения. [c.360]

    При определении натрия в селене и теллуре высокой чистоты применяют различные способы отделения основы. Большие количества селена отгоняют в форме 8еВг4 [ИЗО]. Натрий определяют атомноэмиссионным методом в пламени водород—кислород. После отгонки селена в остатке остаются К, Li, u, d, Fe, Al, TI, Bi, Hg, a и Mg. Для уменьшения влияния элементов (например, Са) в раствор вводят буферную добавку — нитрат алюлшния (25 г/л). Присутствие щелочных металлов — калия и лития — определению не мешает. Предел обнаружения натрия 10 %. [c.166]

    У. Крукс [385, 388], наблюдая в 1861 г. спектр шламма сернокислотното производства, заметил в нем зеленую линию (5 535 ммк), не соответствовавшую ни одному из ранее известных элементов. При исследовании этого вещества был обнаружен новый элемент. Яркая зеленая линия его спектра дала У. Круксу основание назвать этот элемент таллием — по-гречески <)aiXoQ, что означает молодая ветвь , цвет которой напоминает зеленую линию таллия. Дата опубликования первой статьи о таллии — 30 марта 1861 г.— считается днем открытия этого элемента. Правда, У. Крукс вначале опшбоч-но принял таллий за металлоид, аналог серы, селена и теллура. В 1862 г. А. Лами [609, 612] впервые выделил довольно большое количество (14 г) таллия из ила сернокислотного производства и установил его металлическую природу и сходство с соединениями свинца, серебра и щелочных металлов. Он получил ряд соединений таллия и довольно точно о п-редел ил его атомный вес (205,22). Уже в 1863 г. атомный вес таллия был установлен с удовлетворительной точностью— 204,0 [611, 89 8]. К этому же времени У. Крукс [386, 387, 389] также получил металлический таллий. Почти одновременное выделение металлического таллия привело к спору между У. Круксом и А. Лами о приоритете открытия таллия.  [c.5]


    Катионы, содержащие 10 атомов, представлены ионами 8ею + [6] и Те28е8 + [7]. Они обладают одинаковой структурой, альтернативно описываемой или как шестичленное кольцо в форме ванны, замкнутое мостиковой цепочкой из 4 атомов, или как конфигурация, образованная двумя спаянными 8-атомными кольцами. Заштрихованные кружки на рис. 16.2, б изображают атомы теллура в Te2Se8 [8]. Наиболее примечательный из катионов серы — катион, обнаруженный в 819(АзРб)2 он состоит из двух 7-членных колец, соединенных цепочкой из 5 атомов серы [8]. [c.444]

    Комм. Каковы протолитические свойства серной кислоты Оцените результаты опытов Пз и Пз с точки зрения окислительных свойств.серной кислоты (разбавленной, концентрированной). Сделайте вывод об изменении протолитических и окислительно-восстановительных свойств соединений с ростом степени окисления серы. Используя литературные сведения, охарактеризуйте окислительно-восстановительные свойства соединений селена(У1) и теллура(У1). На основании проведенных опытов и справочных данных предложите способ обнаружения в растворе сульфат-ионов в присутствии сульфид- и сульфит-ионов. В чем причина получения в П5 осадка сульфата бария, окрашенного в красный цвет Для ответа используйте сведения о возможности внедрения перманганат-ионов в кристаллическую решетку сульфата бария и образования твердого раствора на основе BaS04. [c.150]

    Развитие новых отраслей промышленности — атомной энергетики, ракетостроения, полуироводниковой техники — связано с ирименением материалов особой чисто-т ы, К ним относятся, например, элементные полупроводники (германий, селен, теллур), полупроводниковые соединения (арсенид галлия, фосфид индия), высокочистые цирконий, ниобий и др. В отдельных случаях содержание примесей в этих материалах не должно превышать 10 — 10- %. Для определения различных содержаний элементов необходимы соответствующие методы анализа. В одних случаях для применяемых методов характерным является низкий предел обнаружения, в других — в ы с о- [c.6]

    В марте 1861 г. английский ученый Уильям Крукс исследовал пыль, которую улавливали на одном из сернокислотных производств. Крукс полагал, что эта пыль должна содержать селен и теллур — аналоги серы. Селен он нашел, а вот теллура обычными химическими методами обнаружить не смог. Тогда Крукс решил воспользоваться новым для того времени и очень чувствительным методом спектрального анализа. В спектре он неожиданно для себя обнаружил новую линию светло-зеленого цвета, которую нельзя было приписать ни одному из известных элементов. Эта яркая линия была первой весточкой нового элемента. Благодаря ей он был обнаружен и благодаря ей назван по-латыни ШаНиз — распускаюш аяся ветка . Спектральная линия цвета молодой листвы оказалась визитной карточкой таллия. [c.255]

    Основные научные работы относятся к неорганической и аналитической химии. Открыл (1789) уран и цирконий. Выделил (1795) из минерала рутила окисел нового металла, который назвал титаном установил (1797), что титан и обнаруженный (1791) У. Грегором металл менаканит идентичны. Независимо от Я. Я. Берцелиуса и шведского химика В Г. Гизин-гера открыл (1803) церий. Получил новые данные о соединениях стронция (1793), хрома (1797), теллура (1798). Исследовал процессы горения и обжига металлов, в результате чего стал сторонником кислородной теории Лавуазье. Повторил (1792) на заседании Берлинской АН главнейшие опыты Лавуазье, чем способствовал признанию его воззрений в Германии. Установил, что в железных метеоритах постоянным спутником железа является никель. Изучая лейциты, обнаружил, что они содержат калий тем самым показал впервые, что калий встречается не только в растениях, но и в минералах. Открыл (1798) явление полиморфизма, установив, что минералы кальцит и арагонит имеют одинаковый химический состав — СаСОз. Работы Клапрота были изданы под общим названием К химическому познанию минеральных тел (т. 1—5, 1795-1810). [c.238]

    По мере увеличения расхода (скорости всасывания) анализируемого раствора абсорбционный оигнал усиливается, но после максимума снижается. Положение максимума зависит от конструкции и состояния распылительной системы, свойств анализируемого вещества, применяемого раство рителя и др. Но во всех случаях с увеличением объема порций распыляемого образца максимум смещается в область больших расходов. Так, при определении в водных растворах И элементов методом импульсного распыления дозами 20, 50 и 100 мкл максимальный абсорбционный сигнал наблюдается нри расходах примерно 2,5 3,8 и 6,0 мл/мин. При распылении водных растворов порциями по 40 мкл достигнуты следующие абсолютные пределы обнаружения (в нг) цинк и кадмий—1 серебро — 2 медь — 3 кобальт — 4 железо и никель — 8 свинец и теллур— 12 в1исмут и индий — 24. Абсолютный предел обнаружения ниже, чем в методе непрерыиного распыления, примерно в [c.55]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    Элементы типа As, Se, Те и Bi легко определяются в биологических материалах методом атомной абсорбции. Чувствительность определения этих элементов примерно одинакова ( 1 мкг/мл), яо предел обнаружения висмута и теллура (0,1 мкг/мл) несколько меньше, чем предел обнаружения мышьяка и селена (0,5 мкг/мл). Это в значительной степени зависит от длины волны, используемой в каждом анализе. Все четыре элемента легко экстрагируются из водных растворов с pH равным примерно 4. В качестве комплексообразователя используется ПДКА, а в качестве органической фазы-МИБК [163]. [c.163]

    Спраг и др. [51] определяли селен и теллур в различных медных основах. Если не применять теллуровые лампы, в которых чашка катода сделана из меди, помехи отсутствуют. Как обычно, необходимо уравнивать содержание меди и кислоты в эталонных и исследуемых растворах. Различие результатов атомно-абсорбционного и химического методов анализа для теллура составляло 0,001% при содержании его в меди 0,02%. При определении селена в количестве 0,1% в тех же самых образцах расхождение результатов указанных методов анализа не превышало 0,005%-С помощью современных ламп и горелок, которые позволяют анализировать большие количества растворенного вещества, удается улучшить предел обнаружения примерно в 5 раз по сравнению с величинами, приведенными выше. Исследования различных полупродуктов получения селена и теллура, шлаков, электролитов и [c.179]

    Разработана методика дробного обнаружения селена по реакции восстановления солянокислым гидроксиламнном или тномо-чевпной открываемый минимум 5 мкг/мл предельная концентрация 1 200000. Методика дробного открытия теллура основана на реакции с раствором хлорида олова предельная концентрация 1 100000. Мешает открытию присутствие золота [3]. [c.33]

    Разработано полуколичествеппое определение селена в минералах и почвах методом восходящей хроматографии па бумаге. Подвижным растворителем служит смесь 45 мл метанола, 45 мл этанола, 12 мл йоды, 3 мл плавиковой и 0,5 мл азотной кислоты. Для обнаружения селена хроматограмму опрыскивают 3%-ным раствором KJ или же раствором З.З -диаминобензидипа [199]. Тот же метод применен для разделения смеси теллура и висмута. Подвижной фазой служит смесь этанола, изопропилового эфира и соляной кислоты. Открываемый минимум 0,15 мкг Те в присутствии 150 мкг Bi [200]. [c.47]

    Хевеши и Гюнтер [Н74, Н75] исследовали различные минералы, содержащие теллур и висмут (хессит, калаверит, нагиажит, тетрадимит, висмутовый блеск и природный висмут), с целью обнаружения нерадиоактивного (либо очень долгоживущего) изотопа полония. Образец каждого из этих минералов растворяли, и к раствору прибавляли в качестве меченого атома известное количество Ро ° (менее 10 о г). Проводили все операции химического разделения, после чего выделяли полоний электролитически на молибденовом электроде. Выход полония определяли по вновь выделенному количеству меченого элемента. Анализ вторичного рентгеновского спектра остатка не показал никаких, свойственных полонию линий, и тем самым было установлено, что максимальное содержание полония в минералах может составлять около 10 г на 1 г минерала. [c.159]

    Аналогичные методики использовали и для идентификации и количественного определения соединений мышьяка (2+ и 5+) в минеральной воде [111], а также для определения в водных растворах анионных форм мышьяка, селена, теллура и сурьмы [112]. Надежность идентификации в этом случае не ниже 95—100%, а составляет 0,04—0,12 г/л. Методики на основе ВЭЖХ/МС/ИНП применялись для обнаружения в воде ртути и идентификации чрезвычайно токсичной метилртути в морских организмах [113] для определения комплексных соединений следовых количеств металлов с органическими молекулами большой массы [114] и обнаружения остаточных количеств фосфорсодержащих пестицидов в подземных водах [115] с j в интервале 5—37 нг/л. [c.596]

    Использование различных гибридных методов для обнаружения органических и неорганических соединений селена и теллура в воздухе, воде, почве и донных отложениях описано в обзоре [149]. Аналогичный обзор по применению комплекса хроматографических методов (БХ, ИХ, ТСХ, ВЭЖХ и ГХ) для определения в воздухе, воде и почве обладающих канцерогенными свойствами бенз[с]акридинов и азааренов опубликован в работе [150]. Методы пробоотбора и газохроматографической идентификации и определения биогенных углеводородов (изопрен и монотерпены) обсуадаются в обзоре [152]. Для идентификации применяют информацию, полученную с помощью масс-спектрометра и набора хроматографических детекторов ПИД, ФИД, ЭЗД и ХЛД (определение озона). Достоверность идентификации достаточно велика, а С лежит на уровне ppt. [c.605]

    В работе [44] показано, что среди аналитических линий теллура 214,3, 225,9 и 238,6 нм наиболее чувствительна линия 214,3 нм. С помощью оптической системы с пятикратпим прохождением луча достигнута чувствительность 0,23 ррт и предел обнаружения 0,076 ррт. [c.214]

    Обозначилась тенденция в методах ААС и АФС переводить оп-)еделяемый элемент в летучий гидрид перед введением в пламя. Три использовании этого метода достигнут предел обнаружения теллура 0,0015 мкг/мл [46]. Прибор для генерирования гидрида показан на рис. 28. Гидрид получается при введении подкисленного раствора в разбавленный раствор боргидрида натрия. Проведенные исследования показали, что теллур(VI) полностью восстанавливается в среде НС1 до теллура(1 ), но eлeн(VI) восстанавливается только наполовину. [c.215]

    За исключением одного — сходного с цезием франция, который открыт совсем недавно,—все эти элементы были найдены и описаны за два десятилетия, с 1898 по 1918 год. Аналогичный с теллуром элемент— это полоний, открытый в 1899 году. Его атомный вес (210), как и предвидел Менделеев, действительно больше, чем у висмута (209) . Элементы с атомными весами, 210—230 —это сходный с барием элемент радий (атомный вес 226), обнаруженный в 1898 году, и актиний (атомный вес 227), открытый в 1899 году. Наконец, элемент, помещающийся между торием и уранбм, — это [c.186]


Библиография для Теллур обнаружение: [c.177]   
Смотреть страницы где упоминается термин Теллур обнаружение: [c.19]    [c.151]    [c.482]    [c.66]    [c.261]    [c.482]    [c.192]    [c.78]    [c.166]    [c.58]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.28 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Теллур

Теллуриты



© 2025 chem21.info Реклама на сайте