Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы реакция с амидом натрия

    В первоначальном варианте метода соответствовал галоге-нид-иону, однако в качестве уходящей группы могут использоваться также сульфонаты, сульфаты или/карбоксилаты) При 0-алкили-ровании простых спиртов в качестве растворителя часто используется избыток спирта, однако для спиртов с большой молекулярной массой обычно необходим растворитель. Кипячение спирта с металлическим натрием или калием в высококипящем углеродном растворителе, например толуоле или ксилоле, служит популярным методом получения алкоксидов, предположительно в связи с тем, что расплавленный металл имеет чистую поверхность для реакции со спиртом, однако в этих растворителях алкоксиды обладают ограниченной растворимостью. Для солей щелочных металлов лучшими, по сравнению с углеводорода.ми, растворителями являются жидкий аммиак и простые эфиры, однако наиболее эффективными растворителями для нуклеофильного замещения, особенно в случае метил- или бензилгалогенидов, где отсутствует проблема катализируемой щелочью р-элиминации, служат такие ди-полярные апротонные растворители, как ДМФ и ДМСО. Эти последние растворители особенно полезны при легком образовании эфиров полиатомных спиртов, таких как полисахариды [94]. Для получения алкоксидов в качестве основания обычно используются щелочные металлы, амид натрия и гидрид натрия, причем последний становится все более популярным в связи с его доступностью в виде порошка. Полезным вариантом метода, в котором в качестве растворителя используется ДМСО, является реакция гидрида натрия с растворителем с образованием соответствующего карб-аниона, представляющего собой сильное основание [95]. Метод метилирования по Хеуорсу [96], заключающийся в обработке диметил-сульфатом и гидроксидом натрия в воде, оказался особенно ценным при развитии хи.мии углеводов, однако в дальнейшем не нашел широкого применения. Этот метод не дает удовлетворительных результатов при этерификации алифатических спиртов, однако может применяться для фенолов. Тот факт, что данный метод может использоваться для углеводов, вызван, по-видимому, их несколько большей кислотностью по сравнению с алифатическими спиртами. [c.318]


    Едкие щелочи при нагревании действуют на пиридин аналогично амиду натрия. При этом происходит выделение водорода и образование а- и т-оксипиридинов. Эти же соединения могут быть получены при действии на соответствующие аминопиридины азотистой кислоты. Оксипиридины подобны фенолам они дают цветную реакцию с хлорным железом, растворяются в водных щелочах, а- и у-Оксипиридины—твердые вещества (темп, плавл. а-оксипиридина 107 °С темп, плавл. т-оксипиридина 148 °С) они таутомерно превращаются в кетосоединения—пиридоны  [c.612]

    В реакциях оловоорганических дихлоридов с фенолами такие акцепторы галоидоводородов, как металлический натрий или карбонат натрия неэффективны [359]. Однако в присутствии амида натрия эти реакции проходят легко, например  [c.414]

    Соединения класса С. Гидролизом с помощью горячего раствора едкого натра (28, г) пользуются для превращения амидов, замещенных амидов, нитрилов и некоторых ароматических аминов при замещающих отрицательных группах в соответствующие кислоты или фенолы с выделением аммиака или аминов. Нитрогруппы можно открывать, действуя оловом с соляной кислотой (32), гидратом закиси железа (12) или цинком с хлористым аммонием (36). Спиртовые группы открываются реакцией с хлористым ацетилом (1, г), а карбонильные группы — с гидроксил  [c.91]

    Такие алкилфенолы имеют ряд особенностей, они, например, не реагируют с едкими щелочами [58] и металлическим натрием. Слабую химическую активность этих соединений обычно объясняют тем, что группа ОН экранирована изобутильными радикалами, и поэтому имеется пространственное затруднение для протекания каких-либо реакций с группой ОН. Однако более детальное изучение этого вопроса показывает, что такое объяснение явно недостаточно, так как тот же экранированный алкилами фенол легко реагирует с реактивом Гриньяра, молекула которого имеет большие размеры, чем молекула едкого натра. Любопытно, что и с металлическим натрием экранированный фенол не реагирует только в том случае, когда реакция ведется в растворе петролей-ного эфира, и достаточно легко реагирует, если вести реакцию в жидком аммиаке. В последнем случае образуется амид натрия NH2Na —сильное основание, который и реагирует с экранированной группой ОН. [c.305]

    Стадию металлирования (К) можно осуществить действием различных оснований, причем чем слабее основание, тем более высокая температура необходима для проведения реакции. Например, превращение хлорбензола в фенол действием водного гидроксида натрия требует 250°С. С более сильным основанием трет-бутилатом калия это превращение проходит при ж150°С, в то время как наиболее мощные основания — алкил- и арилметаллы — позволяют проводить реакцию при температуре между —70 и 35 °С. Однако наиболее часто в качестве оснований используются амиды металлов, например амид натрия или пиперидид лития. Эти основания достаточно сильны, их удобно получать и они могут быть использованы как в инертных растворителях, так и в избытке исходного амина в широком интервале температур. Свободные амины, например пиперидин и К,К,К, К -тетраметилэтилен-диампн, также катализируют реакцию за счет увеличения сольватации катиона [94]. Как сообщалось, большими преимуществами [c.604]


    Способность пиримидина к реакциям замещения довольно мало изучена. Можно, однако, сказать, что в этом отношении он отличается от пиридина, как пиридин от бензола. Так, к электрофильным замещениям он способен еще меньше, чем пиридин, а если замещение происходит, то заместитель вступает в положение 5 (р-положение по отношению к обоим азотам). Действие амида натрия на 6-метилпиримидин приводит в результате нуклеофильного замещения к 2-амино-б-метилпиримидину, хотя метил и должен ослабить электрофильность пиримидинового ядра. В метилпиримидинах метильные группы 2, 4 и 6 вступают в реакции конденсации кротонового типа с альдегидами, как и метильные группы а- и у-метилпиридинов. 2-, 4- и 6-Хлорпиримидины обладают (подобно 2-, 4- и 6-хлорнитробензолам) реакционноспособным галоидом, который не только замещается в результате нуклеофильных атак, но и вступает в реакцию Фриделя — Крафтса с ароматическими углеводородами. Оксипроизводиые пиримидина обладают более сильными кислотными свойствами, чем фенолы. Боковые алкильные группы гомологов пиримидина можно окислить в карбоксилы, не затрагивая пиримидинового цикла, очень устойчивого к окислению. Пиримидины, замещенные на ОН, ЫНг и другие активирующие группы, нитруются, нитрозируются и азосочетаются в положение 5 заместители, естественно, находятся в положениях 2, 4 или 6 и ориентируют в орто- и пара-положения по отношению к себе. Аминогруппа в положении 5 способна диазотиро-ваться, а аминогруппы в положениях 2, 4 и 6 на холоду не затрагиваются азотистой кислотой, а при легком подогревании замещаются на ОН. [c.317]

    Многие циклогексеноны получают реакциями замыкания циклов (см. разд. 5.2.9), тогда как другие доступны в результате восстановления эфиров фенолов щелочными металлами в жидком аммиаке (восстановление по Берчу) см. обзоры [36, 392, 393]. Восстановление по Берчу приводит [схема (103)] к 2,5-ди-гидроароматическим соединениям (138), причем протоны предпочтительно присоединяются к незамещенным атомам углерода по своему влиянию заместители располагаются в ряд 0Ме>А1к>>Н. Осторожный кислотный гидролиз освобождает циклогексен-З-он. Литий в качестве восстановителя имеет преимущества перед натрием и калием, и он совместим с такими сорас-творителями, как диэтиловый эфир или диоксан, которые могут быть необходимы в случае трудно растворимых субстратов. Добавки кислого характера, обычно метанол, этанол или хлорид аммония, применяют для того, чтобы избежать накопления амид-ионов, которые способны изомеризовать несопряженное 2,5-ди гидроароматическое соединение в сопряженный диен. Последний может восстана Ьливаться далее под действием избытка металла. Многочисленные модификации, включая использование тщательно перегнанного аммиака и недорогих натрия и калия, а также примеры применения реакции к стероидным молекулам описаны в [393]. [c.649]

    Способность пиримидина к реакциям замеш,ения довольно мало изучена. Можно, однако, сказать, что в этом отношении он отличается от пиридина, как пиридин от бензола. Так, к электрофильным замещениям он способен еще меньше, чем пиридин, а если замещение происходит, то заместитель вступает в нолояадние 5 (Р-положение по отношению к обоим азотам). Действие амида натрия на 6-метилпиримидин приводит в результате нуклеофильного замещения к 2-амино-6-метилпиримидину, хотя метил и должен ослабить электрофильность пиримидинового ядра. В метилпиримидинах метильные группы 2, 4 и 6 вступают в реакции конденсации кротонового типа с альдегидами, как и метильные группы а- и 7-метилпиридинов. 2-,4- и 6-Хлорпиримидины обладают (подобно 2-, 4- и 6-хлорнитробензолам) реакционноспособным галоидом, который не только замещается в результате нуклеофильных атак, но и вступает в реакцию Фриделя — Крафтса с ароматическими углеводородами. Оксипроизводные пиримидина обладают более сильными кислотными свойствами, чем фенолы. Боковые алкильные группы гомологов пиримидина можно окислить в карбоксилы, не затрагивая пиримидинового цикла. [c.347]

    Щелочное плавление применяется не только для получения фенолов, но также и для проведения разнообразных реакций конденсации, например для замыкания циклов. Здесь следует только упомянуть о синтезе индиго из фенилглицина или из фенилглицин-о-карбоновой кислоты, а также получении индантреиа из р-аминоантрахинона и дибензантрона из бензантрона. Для успешного проведения реакций конденсации такого типа, осуществляемых с помощью щелочного плавления, часто является весьма существенным отсутствие даже следов воды и немедленное связывание воды, образующейся в процессе реакции. Для достижения этой цели в плав добавляют амид натрия или окись кальция. В последнем случае имеет место собственно не плавление, а только спекание реакционной смеси. [c.84]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]


    Производные мочевины по своим реакциям напоминают амиды изоцианаты образуют нри гидролизе амины и двуокись углерода. Производные мочевины, пептиды и белки дают биуретовую реакцию. Алкалоид физостигмин СНдМНСООК представляет собой карбамат при обработке этилатом натрия он образует метилуре-тан и фенол — эзеролин [293]. [c.32]

    Очень удобный метод получения триэфиров фосфористой кислоты основан на термодинамически контролируемой равновесной реакции между триэфиром, чаще всего триэтил- или трифенилфос-фитом, и йеобходимым количеством спирта или фенола подобные процессы катализируются следовыми количествами оснований, например этоксида или феноксида натрия, или кислот, например фосфорной. Гексаалкилтриамидофосфиты и другие амиды фосфо- [c.682]

    В 1867 г. Август Кекуле описал превращение бензол-сульфоната натрия в фенол при сплавлении со щелочью [1]. Эта реакция нуклеофильного замещения в ароматическом ряду вскоре приобрела такую известность, что Гребе и Либерман всего двумя годами позже использовали ее в своем синтезе ализарина [2]. Уже в 1875 г. Барт и Зенхофер [3] наблюдали перегруппировки в процессе замещения такого типа преимущественное образование резорцина при сплавлении изомерных бензол-дисульфонатов со щелочью. Замещение в арилгалогенидах при действии амидов щелочных металлов также сопровождалось перегруппировками, несовместимыми с последовательными присоединением и отщеплением обычного, так называемого активированного нуклеофильного замещения. [c.200]

    В литературе можно найти множество примеров получения макроциклов циклизацией эквимолярных количеств К,1Ч-б с-арил- или алкилсульфамидов с а,со-дигалогенидами [133—138]. На основе этих методов осуществляли циклизацию реакцией быс-тозил-аминов 288 и 289 с 1,10-дибромдеканом в присутствии карбоната калия в диметилформамиде. В случае амида 290 ввиду его низкой растворимости в диметилформамиде реакцию проводили в смеси метанол — диметилформамид, в качестве основания использовали этилат натрия [133]. Выходы полученных анса-соеди-нений 295, 296 и 297 составляют соответственно 45, 23 и 26%. В случае б с-метансульфамида 2,5-диме-токси-л-фенилендиамина, который в противоположность соединению 290 более растворим в диметилформамиде, при взаимодействии с 1,10-дибромдеканом в присутствии карбоната калия при 90 °С выход соединения 299 составляет 68%. Амиды 295, 296 и 299 гидролизовали под действием бромистого водорода в смеси ледяная уксусная кислота — бензол — фенол и получали соединения 300, 301 и 302 с выходами 50, [c.102]


Смотреть страницы где упоминается термин Фенолы реакция с амидом натрия: [c.697]    [c.224]    [c.226]    [c.848]    [c.848]    [c.160]    [c.35]    [c.138]    [c.35]    [c.450]    [c.507]    [c.100]    [c.100]    [c.10]    [c.649]    [c.35]    [c.215]    [c.388]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.363 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий реакции

Фенолят натрия



© 2025 chem21.info Реклама на сайте