Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы с применением ионного обмена

Рис. 65. Технологическая схема установки для очистки вод с применением процессов коагуляция—ионный обмен Рис. 65. <a href="/info/1456642">Технологическая схема установки</a> для очистки вод с <a href="/info/28414">применением процессов</a> <a href="/info/172025">коагуляция—ионный</a> обмен

    В настоящее время процессы ионообменной сорбции находят все более широкое применение в промышленности. В частности, путем ионного обмена производятся умягчение и обессоливание воды, очистка различных растворов, улавливание и концентрирование ценных металлов из разбавленных растворов, разделение смесей веществ и т. д. В ряде случаев ионный обмен может успешно конкурировать по технико-экономическим показателям с процессами ректификации, экстракции и др. Этому способствует простота аппаратурного оформления ироцессов ионного обмена. [c.581]

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]

    Ионный обмен применяется для выделения небольших количеств электролита из больших объемов раствора либо с целью концентрировать растворенные элементы, либо с целью очистить растворы. Примером может служить выделение плутония из разбавленных растворов, получаемых в процессе экстракционной очистки (см. раздел 10.7). Чаще всего метод ионного обмена используется для извлечения ионных примесей из воды, например с целью ее смягчения или деминерализации. Но этот случай по своему техническому оформлению выходит за рамки радиохимии (в разделе 15.2 рассматривается применение ионного обмена для очистки воды в атомных реакторах). [c.43]


    Динамика ионного обмена смесей описывается, как известно [1, 2], системой дифференциальных уравнений с частными производными, строгое решение которой сопряжено со значительными математическими трудностями. Для практического расчета динамических процессов разделения смесей с неодинаковым распределением компонентов между фазами (одним из таких процессов является ионный обмен) нашел применение приближенный метод расчета по ступеням. Этот метод становится точным, если при расчете равновесных процессов разбивать колонну на бесконечно большое число ступеней, а при расчете неравновесных процессов, если в качестве шага выбран слой, равный по величине теоретической тарелке . [c.159]

    В настоящее время метод ионного обмена является одним из основных физико-химических методов изучения состояния вещества в растворе. Особенно успешным оказалось применение ионного обмена к изучению процессов комплексообразования. Ионный обмен в применении к изучению состояния радиоэлементов в растворе позволяет работать в широкой области концентраций исследуемого вещества, так как нри всех условиях на основании измеренной радиоактивности можно с достаточной точностью судить о распределении исследуемого элемента между ионитом и раствором. В случае же, если изучаемая система нерадиоактивна, добавление к ней радиоактивного изотопа (метод меченых атомов) позволяет изучать эту систему, применяя для количественных определений измерения активности добавленного изотопа. Особенно удобно пользоваться ионным обменом для изучения систем, в которых исследуемый элемент находится в микроконцентрации. [c.587]

    В промышленном органическом синтезе ионообменные процессы находят применение для очистки продуктов от следовых количеств примесей. Примером может служить очистка адиподинитрила и капролактама [80, 81]. Заслуживают внимания работы, посвященные поиску экономического оптимума промышленных ионообменных процессов [82]. Ионный обмен позволяет отделить катионы от анионов, истинные электролиты от коллоидов, электролиты от неэлектролитов. [c.508]

    Одним из наиболее экономичных методов, позволяющих сконцентрировать сбросные вещества и в некоторых случаях вернуть их в производство, является ионный обмен, который нашел широкое применение 1]. Спецификой процесса очистки по сравнению с другими процессами, использующими ионный обмен, являются прежде всего большие объемы очищаемых растворов, содержание извлекаемых веществ в которых очень мало, необходимость получения высоких коэффициентов очистки и концентрирования извлекаемого продукта. В ряде случаев исходные концентрации при очистке на 2—3 порядка ниже, чем в других технологических процессах, например гидрометаллургических. Кроме того, очистка должна быть возможно более [c.170]

    Ионный обмен в динамических условиях находит широкое применение для умягчения и деминерализации воды в колоночном варианте. Процесс ионообменной деминерализации осуществляется в две стадии  [c.111]

    К решению любой аналитической задачи с применением процессов ионного обмена многие исследователи до сих пор подходят эмпирическим путем, в лучшем случае определяя коэффициенты распределения исследуемых ионов на ионите. Подобный подход не является строгим, поскольку величина коэффициента распределения при ионном обмене зависит от параметров опыта (концентрации раствора, pH [c.133]

    Один из примеров практического применения ионного обмена— умягчение (деминерализация) воды. Процесс умягчения заключается в том, что поверхность адсорбента поглощает из воды катионы Са и Mg2+, которые обмениваются на ионы Ыа+, переходящие в воду. В качестве адсорбентов, посылающих в воду ионы N3+ в обмен на ионы Са2+ и Мд +, были использованы природные и искусственные минералы — алюмосиликаты. Но полностью этот вопрос был решен тогда, когда удалось синтезировать фенолформальдегидные смолы, способные к катионному обмену (так называемые катиониты). [c.70]

    Одним из наиболее удобных методов радиохимического разделения, особенно для маломасштабных работ, служит ионный обмен. Этот процесс имеет. место в том случае, когда твердый продукт, содержаший как связанные ионы, так и очень подвижные ионы противоположного знака, контактирует с раствором электролита. Ионообменные свойства обнаруживают многие природные и синтетические неарганические материалы, а также синтетические органические материалы. Из них вполне доступны и нашли широкое применение органические смолы, обладающие разнообразными свойствами. [c.38]

    Б. Химические методы обработка дезактивирующими растворами, ионный обмен, применение ультразвука, электрохимические процессы. [c.28]

    Кроме того, как было указано, не все радиоактивные загрязнения находятся в воде в ионном состоянии. Имеют место и другие формы истинные коллоиды, радиоколлоиды, тонкие взвеси и пр. Они не вступают в обменные реакции с ионитами, но сорбируются на них и мешают нормальному протеканию процессов ионного обмена и регенерации смол. Поэтому при выборе оптимальной технологической схемы очистки сбросных вод радиохимических лабораторий и экспериментальных ядерных реакторов ограничиться применением ионного обмена можно только в единичных случаях. Все сказанное выше делает необходимым продолжить разработку новых, более экономичных и простых методов очистки сбросных вод. [c.90]


    Ионообменная хроматография основана на применении ионообменников (ионитов) в колоночном процессе. Ионный обмен — это взаимодействие активных групп твердой фазы с ионами в растворе. [c.177]

    Следует отметить, что хотя переход от разбавленных растворов к концентрированным при ионном обмене должен привести к внутридиффузионному процессу и при регенерации ионитов следовало бы ожидать независимости скорости процесса от скорости фильтрования раствора. Однако опыт показывает, что некоторое влияние скорости фильтрования на регенерацию катионита остается даже при применении 4—6 н растворов кислот и щелочей. [c.218]

    Получение чистых солей рубидия и цезия в промышленных масштабах принципиально возможно как при применении классической хроматографии (т, е. чисто адсорбционных процессов), так и при помощи ионообменной хроматографии, при которой вместо адсорбентов используют органические и неорганические иониты. Между этими двумя хроматографическими процессами нельзя провести четкой границы, так как обычные адсорбенты в известной степени действуют также, как иониты, а на собственно ионный обмен часто накладывается адсорбция и гидролиз [361, 362]. [c.344]

    Главное различие между ионным обменом и способом отстающего электролита заключается в неодинаковых затратах на осуществление этих процессов основание для применения способа отстающего электролита почти всегда лежит в области экономики. [c.138]

    Иониты. Способностью к ионному обмену обладают многие природные вещества глины, апатиты, угли, а также синтетические вещества — плавленые цеолиты, молекулярные сита, гидроксиды железа и алюминия, смолы. Ионообменные смолы имеют особое значение. Только с их появлением ионообменные процессы нашли широкое промышленное применение. [c.386]

    Способы дезактивации классифицируют исходя из условий радиоактивного загрязнения и условий проведения самой дезактивации. В зависимости от агрегатного состояния дезактивирующей среды все способы дезактивации подразделяют на жидкостные, безжидкостные и комбинированные (табл. 11.3). Жидкостные способы включают механическое воздействие (струя воды, ультразвук и т. д.), физико-химические процессы (ионный обмен, адсорбцию и т. д.) и их одновременное применение. Сочетание жидкостных и безжидкостных способов обработки реализуется в комбинированных способах. Под комплексной дезактивацией понимают обработку одного и того же объекта различными способами. [c.188]

    Кроме осаждения и соосаждения, существуют и другие методы разделения, основанные на различных явлениях на поверхности твердой фазы. Общий и наиболее характерный из этих методов основан на применении твердого носителя (колонка с зернами поглотителя, полоска бумаги или пластинка и т. п.). Смесь, пропускаемая через такой носитель, постепенно разделяется на отдельные компоненты. Процессы разделения основаны иногда на ионном обмене, в других случаях — на адсорбционных явлениях или на сочетании экстракционных и адсорбционных процессов. Первых два способа относятся к хроматографии. [c.43]

    Большое число опубликованных работ посвящено описанию ионообменных смол, составной частью которых является полистирол или его производные, методам их получения [1241 — 1260], применению и изучению их свойств и процессов, протекающих на них при ионном обмене [1261—1296]. [c.231]

    Разнообразные применения имеет ионный обмен в технике. В качестве примера можно привести процессы умягчения и обессоливания воды. Умягчение воды — замену ионов кальция на ионы натрия можно проводить с помощью высокопористых минералов алюмосиликатов цеолитного типа с общей формулой А120з-т 102-пН20, в которых часть ионов водорода может заменяться на ионы металлов. Используются как природные минералы этого типа, так и синтетические (пермутит). Обозначая условно единичную ионообменную группу через ЫаП, реакцию ионного обмена можно представить в виде [c.213]

    Среди процессов, предложенных для разделения компонентов отработанного топлива, можно отметить соосаждение с носителями (процесс, примененный Манхэттенским округом), дистилляцию летучих галогенидов, ионный обмен и экстракцию растворите-лям и. В качестве примера рассмотрим экстракцию. [c.22]

    Применение ионообменников в осадочной хроматографии основано на осуществлении трехстадийного процесса 1) ионный обмен, связанный с вытеснением иона-осадителя из ионита 2) реакция вытесненного иона-осадителя с хроматографируемыми ионами, приводящая к образованию труднорастворимых соединений 3) сорбционное закрепление осадка на ионите-носителе. [c.203]

    Следует подчеркнуть, что в большинстве обсуждаемых случаев новым в данной главе является лишь применение предлагаемых процессов к основным процессам аффинажа. Ионный обмен и экстракция органическим растворителем широко применяются в производстве рудных концентратов [1 ]. Так называемый мокрый процесс получения зеленой соли, упоминавшийся выше (п. 2), возник на основании исследований, относящихся к ранним работам по планам развития атомной энергии [2]. Первые исследования по возгонке фторидов были проведены в связи с переводом в UFg тетрафторида урана [3], руды [4] и концентратов. Более поздние экспериментальные исследования были направлены на разработку метода фторидной возгонки для количественного извлечения урана из шлака [5—9]. Последние исследования показали перспективность разработки метода фторидной возгонки для обработки шлаков, причем этот процесс будет конкурировать со старыми процессами карбонатного выщелачивания [10] и осаждения аммонийуранилфосфата [11]. [c.490]

    При наличии широкого и постоянно возрастающего применения ионе-обменных процессов в различных областях науки и техники увеличивается и потребность в руководствах, в которых более или менее полно были бы суммированы основные результаты исследований в отой интересной и важной отрасли знания. Весьма полезная книга И. Э. Анельцина, В. А Кляч-ко, Ю. Ю. Лурье и А. С. Смирнова Иониты и их применение (Стандарт-гиз, 1949 г.) не только давно стала библиографической редкостью, но и ее содержание, естественно, не отражает результатов исследований последних лет, в частности, в области теории и синтеза ионитов, а также приме-мения ионообменных процессов в аналитической хияии и медицине. [c.3]

    Эти соли полезно использовать в качестве МФ-катализатора в тех случаях, когда анион катализатора должен переходить в органическую фазу намного хуже, чем реагируюш,ий анион (по терминологии Брендстрёма такой процесс называется препаративная экстракция ионных пар). Изо всех обычных анионов наиболее подходящими являются бисульфат и хлорид. Во многих случаях можно использовать бромиды, однако применение иодидов часто вызывает трудности, особенно в тех случаях, когда в реакцию вводят алкилиодиды, что вызывает образование в ходе реакции дополнительных количеств иодид-ионов. При этом наблюдается отравление катализатора, которое состоит в том, что весь катализатор экстрагируется в форме иодида в органическую фазу и реакция останавливается. Так же как и в случае гомогенных реакций с предварительно полученной аммониевой солью, в системах с иодидами большую роль может играть ионный обмен. Следует подчеркнуть, что такой обмен в большинстве типичных МФК-реакций не является необходимым. Однако в некоторых реакциях в присутствии катализаторов добавление небольших количеств иодида ускоряет процесс иодид обменивается с галогенидом в алкилирующем агенте, делая его более активным (КХ+1 —Таким способом можно влиять на соотношение С/О-изомеров, образующихся при алкилировании амбидентных анионов (см., например, [1716]). [c.82]

    Реакция протекает вправо при избытке кислоты. Ионит в колонке отмывают водой от избытка кислоты, после чего ионит готов к применению. Пробу пропускают через колонку, колонку промывают водой или элюентом. Собирают элюат целиком или по фракциям. Перед каждым последующим применением необходимо проводить регенерацию ионита в колонке, так как в колонке содержатся различные ионы (например, Х , Хг). Происходящий при этом химический процесс аналогичен описанному уравнением (7.4.5). Процесс замены ионов Х+ ионами Хь Ха. .. называют регенерацией ионита, чтобы подчеркнуть, что ионит при этом возвращается в свое исходное состояние. Для сдвига равновесия вправо необходимо подобрать нужную концентрацию кислоты. Концентрированные растворы повышают скорость ионного обмена, но из-за высокой вязкости раствора снижается диффузия ионов. Поскольку процесс ионного обмена протекает сте-хиометрически, можно рассчитать полную обменную емкость колонки, зная количество ионита. Но рассчитанную обменную емкость не всегда можно полностью использовать (разд. 7.3.1.1). Пусть в колонке имеется ионит в Н -форме. Требуется провести ионный обмен с ионами К" . В месте подачи анализируемой пробы в колонку происходит полный обмен ионов Н+ на ионы При дальнейшем пропускании раствора, содержащего ионы К (фронтальная техника проведения ионного обмена), происходит смещение зоны, заполненной ионами К" , вниз. При этом колонку можно разделить на три слоя (рис. 7.17). В первом слое находится ионит только в К" -форме, во втором слое — ионит, содержащий оба иона, в третьем слое — ионит, содержащий ионы Н" . Распределение концентраций происходит по 8-образной кривой (ср. с формой полос элюентной хроматографии). При дальнейшем пропускании раствора КС происходит зарядка второго слоя ионами до проскока. Число ионов К" , которые могут быть количественно поглощены колонкой до проскока ионов, называют емкостью колонки до проскока. Эта емкость меньше величины полной емкости колонки, так как проскок К" -ионов наблюдается в тот момент, когда в колонке еще содержатся Н+-ионы. [c.378]

    Ионный обмен связан с процессом взаимодиффузии противоионов. Стадией, определяющей скорость обмена, является взаимоди4х )узия противоионов или внутри ионита ( гелевая кинетика ) или через пленку раствора вокруг зерна ионита ( пленочная кинетика ). Пленка имеет толщину порядка 10 2—10 см и не удаляется при перемешивании раствора. Для измерения коэффициентов диффузии в ионитах наиболее удобно применение радиоактивных изотопов. [c.99]

    С. Б. Макарова [143] рассмотрели некоторые аспекты применения ионообменных процессов в различных радиохимических и гидрометаллургических производствах. Ф. В. Раузен и другие в ряде теоретических работ обосновывают возможность применения ионообменных процессов для глубокой деионизации вод, загрязненных радиоактивными изотопами [36, 144—146]. Как видно из работ отечественных и зарубежных авторов [33, 123, 145, 147—152], ионный обмен применяется для очистки слабозасоленных вод, загрязненных радиоактивными элементами. В зависимости от количества ступе-, ней ионизирования можно добиться очистки сбросной воды до санитарных норм. [c.85]

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии, что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии, фотохимии, катализе, в изучении процессов окисления и горения, строения и реакционной способности орг. своб. радикалов и ион-радикалов, полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг струк-турно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и /-элементов позволяет определить валентное состояние иона, найти симметрию кристаллич. Поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов. Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уши-рении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр, электронный обмен между ион-р калами и исходными молекулами типа + А. < А + Д , лигандный обмен типа LK + L + L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или Фупп атомов в радикалах и т. д. [c.450]

    В обзоре, [261] описана комбинация процессов, используемых для удаления кремнезема из воды. При низкотемпературном процессе (21°С) с применением доломитовой извести (32 7о MgO) концентрация кремнезема снижается до 0,0002—0,0003 %. При горячем процессе (свыше 49 "С) расход извести сокращается вдвое. Наиболее эффективным в горячем процессе является активированный MgO, необходимая концентрация которого составляет только 0,0012%, что достаточно для снижения содержания кремнезема от 0,0005 до 0,0003 %- Дальнейшее уменьшение концентрации кремнезема достигается ионным обменом с использованием сильноосновной смолы. Согласно Стес-сарту [262], основная часть кремнезема может быть удалена адсорбцией на гидроксиде железа Ре(ОН)з, а оставшееся количество снижается до уровня 0,00003 % ионным обменом на сильноосновной смоле. [c.116]

    Айлер и Уолтер [19] разработали способ, с иомощью которого 15 %-ный золь можно приготовить непосредственно ионным обменом. По этому способу основной золь в воде или в разбавленном водном растворе силиката натрия нагревают и перемешивают. Затем к нему одновременно добавляют увлажненную, отстоявшуюся, регенерированную ионообменную смолу (предпочтительно слабокислотного типа) и относительно концентрированный раствор силиката натрия. Скорость добавления регулируется так, чтобы поддерживать pH около 9, и, кроме того, она зависит от температуры и относительного количестйа и размера частиц основного золя. Это способствует увеличению размера частиц кремнезема и предотвращает процесс образования зародышей. В способе с применением колонны или псевдо-ожиженного слоя смола непрерывно добавляется в верхнюю часть колонны и перемещается вниз противотоком по отношению к движению золя кремнезема [20]. [c.426]

    Применение методов обогащения и гидрометаллургии для очистки воды и переработки отходов производства, загрязняющих окружающую среду, приобретает все большее значение. В связи с этим ведутся широкие исследования по ионному обмену, ионной флотации, электрофлотацни ионов и осадков. Последний процесс позволяет в ряде случаев флотировать ионы металлов без введения в пульпу органических реагентов [38, 83, 140]. Эти же методы пригодны для очистии и извлечения ценных компонентов из природных вод шахтных, морских, термальных и др. [c.8]

    Экономичная переработка бедных и труднообогатимых руд, рациональное использование ресурсов минерального сырья невозможны без решения задачи комплексной переработки руд. Поэтому получат применение комбинированные процессы и комбинированные флотационно-гидрометаллургические схемы, включающие экстракцию, ионный обмен, обжиг, иойну ю флотацяю, бактериальное и химическое выщелачивание и др. [c.127]

    Следует отметить, что возможно различное конструктивное оформление процессов, находящихся по данной классификации в одном классе, а также применение различных веществ, образующих твердую и жидкую фазу. Так, например, известны следующие разделительные процессы, осуществляемые на границе раз- дела твердое — вода за счет адсорбционно-химического воздействия извлекаемых частиц с межфазной границей амальгамация, обогащение на липких поверхностях. ионный обмен, флотация твердой стенкой, извлечение гидрофобных частиц благородных металлов древесными опилками, активированным углем и т. д. Возможно также различное аппаратурное оформление процессов особенно многс)-численны аппаратурные разновидности гравитационных процессов. [c.143]

    Исследования структуры, адсорбционных, ионообменных и других свойств цеолитов часто проводились на природных образцах. Так, все первые экспериментальные работы по ионному обмену н селективной адсорбции различных газов (см. гл. 1) были выполнены на природных минералах. Эти работы значительно расширили наши знания о цеолитах. Основные сведения о природных цеолитах — их классификация, распространеппость, условия образования и свойства — очень важны для понимания процесса синтеза и свойств синтетических цеолитов. Следует отметить, что, хотя некоторые разновидности цеолитов образуют значительные месторождения, природные образцы пока еще не наш.яп широкого применения в качестве катализаторов и адсорбентов, тогда как ряд их синтетических аналогов успешно используется на практике. [c.195]

    Светлов A. K., Крахмалец И. A., Кушпиков -Ю. A. и др. Изучение свойств новых полифункциональных серосодержащих ионитов. Тезисы докл. IV Всесоюз. науч. конф. по теории сорбционных процессов и применению ионообменных материалов.—В кн. Ионный обмен и хроматография. Воронеж, 1976, с. 97—98. [c.257]

    Ионный обмен и жидкостная экстракция имеют и другую ласть, где возможности их применения особенно близки совмеШ ние во времени процессов извлечения металлов из руд в водНЗ фазу и извлечения из нее. Это технологическое направление  [c.122]

    В обыч юм ионообл енном процессе для регенерации смолы требуются химические реагенты, в способе же отстаюгцего электролита расходуется только вода, а поэтому этот процесс дешевле. Следовательно, способ отстающего электролита может быть выгодно применен в тех случаях, когда обычный ионный обмен неэкономичен, особенно ттри высоких концентрациях ионов в растворе. [c.138]

    Сорбция и ионный обмен широко используются в процессах подготовки воды для промышленных нужд (умягчение, обессо-лнвание) извлечения ценных компонентов из растворов и пульп в гидрометаллургии тяжелых металлов очистки различных химических продуктов и сбросных вод и во многих других процессах. Масштаб исиользования и области применения ионного обмена постоянно расширяются. [c.87]

    Экстракционно-хроматографические колонки с аминами в качестве неподвижны фаз часто оравнивают с ионным обменом на смолах в результате иногда приходят к выводу о нецелеоообраз-ности использования колонок с аминами, поскольку смолы легко доступны и нашли широкое применение. Действительно, роль и той и другой систем приблизительно сводится лишь к предоставлению катионных групп для содержащихся в элюенте анионных частиц, и, хотя реальные химические процессы, обусловливающие распределение, по-видимому, существенно различаются, но в большинстве случаев селектианость и даже факторы разделения очень близки. [c.160]

    Процесс обратного осмоса кроме самостоятельного применения хорошо сочетается с традиционными способами разделения (ионным обменом, ректификацией, адсорбцией, экстракцией, электродиализом), что открывает широкие возможности для создания принципиально новых, простых и малоэнергоемких технологических процессов и производств с замкнутым циклом водооборота. [c.212]

    Развитие теории и практики ионного обмена привело к его широкому распространению в качестве ценного метода исследования комплексных соединений. Интерес к этой области применения ионного обмена возник в связи с тем, что в природном катионите — минерале перму-тите, находившемся в равновесии с раствором хлорида меди(И),— было обнаружено ош,утимое количество иопов хлора [1]. Этот результат был объяснен поглош,ением катионных комплексов СиС . Потребовалось, однако некоторое время, прежде чем ионообменные системы смогли стать источником информации о природе комплексных частиц, поглощаемых ионитом 21. Первые работы [3, 4], посвященные количественному изучению комплексообразования в водных растворах методом ионного обмена с использованием закона действия масс, относятся к концу сороковых годов. В этих работах исследовался катионный обмен в системах, в которых присутствовали комплексные частицы лишь одного сорта, причем эти частицы не сорбировались ионитом. Впоследствии оба ограничения были сняты, ж в настоящее время катионный обмен используется как для непосредственного исследования комплексообразования, так и для проверки результатов, полученных другими методами. Открытие поглощения металлов анионитами [5] указало на возможность применения анионного обмена для общей характеристики [6], а затем [7, 8] и для количественного исследования процессов комплексообразования в растворах. [c.368]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]


Смотреть страницы где упоминается термин Процессы с применением ионного обмена: [c.221]    [c.256]   
Смотреть главы в:

Химическая переработка ядерного топлива  -> Процессы с применением ионного обмена




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Обменные процессы

Процесс ионный



© 2025 chem21.info Реклама на сайте