Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные свойства атомных ядер

    В основе спектроскопии ядерного магнитного резонанса лежат магнитные свойства атомного ядра. Из ядерной физики мы знаем, что некоторые ядра, в том числе и протон, обладают угловым моментом Р, который в свою очередь обусловливает появление у этого ядра магнитного момента л. Обе величины связаны соотношением [c.17]

    Я. Г. Д о р ф м а п. Магнитные свойства атомного ядра, 1948. [c.203]


    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]

    Магнитные свойства. Магнитный момент атомов Не равен магнитному моменту их атомного ядра и составляет 0,7618 1о1> — магнитный момент протона. Магнитный момент ядра Не в отличие от момента протона отрицателен. Он является наибольшим по абсолютной величине отрицательным магнитным моментом атомного ядра. Сведения о магнитных свойствах Не важны для выяснения причин аномалий, наблюдаемых при низких температурах. [c.255]

    Физические основы спектроскопии ядерного магнитного резонанса определяются магнитными свойствами атомных ядер. Взаимодействие магнитного момента ядра с внешним магнитным полем Во приводит в соответствии с правилами квантовой механики к диаграмме ядерных энергетических уровней, так как магнитная энергия ядра может принимать лишь некоторые дискретные значения Я,- — так называемые собственные значения. Этим собственным значениям энергии соответствуют собственные состояния — те состояния, в которых только и может находиться элементарная частица. Они также называются ста-ционарными состояниями. С помощью высокочастотного генератора можно вызвать переходы между собственными состояниями на диаграмме энергетических уровней. Поглощение энергии можно обнаружить, усилить и записать как спектральную линию, или так называемый резонансный сигнал (рис. 1). [c.10]

    В случае магнитного резонанса электронного спина, электронного парамагнитного резонанса (ЭПР), связь спина электрона с магнитным моментом атомного ядра приводит к весьма сложному расщеплению, которое называется сверхтонкой структурой спектра ЭПР. В ЯМР соответствующее расщепление резонансных линий, как правило, не возникает, так как вследствие быстрой спин-решеточной релаксации электронных спинов скорость переходов между спиновыми состояниями, соответствующими ориентациям спина по полю и против поля (т.е. между состояниями, характеризуемыми магнитными квантовыми числами /Иi = 1/2 и -1/2), так велика, что ядерный спин "видит" некое усредненное состояние. Однако поскольку всегда несколько больше магнитных моментов электронов ориентировано по полю, чем против поля, аналогично тому, как это ранее было показано для магнитных моментов ядер/г/, то возникающий при этом результирующий электронный магнитный момент является причиной наблюдаемых парамагнитных свойств веществ, содержащих свободные радикалы и парамагнитные ионы взаимодействие ядерного спина с электронным приводит к парамагнитному сдвигу сигналов ЯМР, и, кроме того, включается дополнительный механизм релаксации, к рассмотрению которого вернемся в разделе 1.3.7. [c.33]


    Спектроскопия ЯМР основана на измерении магнитных свойств атомных ядер. Магнитные свойства ядер, в свою очередь, обусловлены тем, что ядра атомов, вращающиеся вокруг собственной оси, имеют момент количества движения, который называется спином ядра. Спин характеризуется ядерным спиновым квантовым числом /, которое может принимать значения О, 1/2, 1, 3/2,. .. и определяется числом протонов и нейтронов, составляющих ядро. [c.539]

    Для многих элементов и их изотопов характерны парамагнитные явления, которые обусловлены магнитными свойствами атомных ядер. Если эти элементы поместить в магнитном поле, то ядра их атомов ориентируются определенным образом. Наблюдение явления ЯМР в исследуемом веществе возможно при соответствующем выборе частоты магнитного поля. Спектрометры ЯМР находят применение в лабораторных исследованиях для качественного и количественного анализа веществ. В промышленности они используются для определения влажности най-лонового волокна, степени полимеризации полистирола и т. д. Впервые спектрометр ЯМР был использован на опытной установке в 1956 г. [c.540]

    Атомное ядро имеет электрический заряд и в магнитном поле оно ведет себя подобно маленькому магниту. Чтобы понять магнитные свойства ядра, представим себе, что оно вращается. Если электрический заряд ядра распределен по всему его объему, то его вращение можно описать как движение заряда по окружности вокруг некоторой оси. А при таком вращении возникает магнитное поле. Стало быть, вращающееся ядро должно обладать магнитным моментом, или спином. Теперь понятно, почему в магнитном поле атомное ядро ведет себя как маленький магнит. Если поместить его между полюсами большого магнита, то подобно стрелке компаса ядерный магнитик стремится расположиться параллельно приложенному полю. А чтобы изменить его ориентацию на противоположную, необходимо затратить энергию. [c.219]

    Физика полимеров в той части, которая рассматривает полимеры как конструкционные материалы, является сравнительно новым разделом физики твердого тела [15]. Физику твердого тела, и физику полимеров в частности, интересует связь между строением и свойствами веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, в которых можно выделить ряд важнейших подсистем (решетка, молекулы, атомные ядра, система электронов, система спинов, фононы и др.). Хотя указанные подсистемы связаны между собой, воздействия на твердые тела различных силовых полей (механических, электрических и магнитных) вызывают раздельное проявление их особенностей. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонанса, а также диэлектрическими и акустическими методами. [c.6]

    Атомные ядра и электроны, имея определенный электрический заряд, могут обладать и некоторым магнитным моментом, причем у ядра он примерно на три порядка меньше, чем у электрона. Молекула как система, состоящая из этих заряженных частиц, также может -характеризоваться вектором магнитного момента, который связан главным образом с орбитальным и спиновым движениями электронов. Еще одной характеристикой молекулы является тензор магнитной восприимчивости. Этими свойствами и определяются явления, происходящие при нахождении молекулы в магнитном поле. К важнейшим физическим методам исследования, связанным с изучением результатов взаимодействия молекул вещества с постоянным и переменным внешними магнитными полями, относятся методы радиоспектроскопии ЯМР и ЭПР. [c.6]

    Таким образом, если поместить атомное ядро некоторого изотопа, обладающего магнитными свойствами, в сильное магнитное поле, то оно приобретает способность поглощать или излучать радиоволны, частота которых у каждого изотопа имеет характерное для него значение. [c.16]

    При рассмотрении физических свойств и характера их изменения в периодической системе следует различать атомные свойства (свойства элементов) и свойства простых веществ (гомоатомных соединений). Кроме того, физические свойства простых веществ могут характеризовать обе формы химической организации вещества (молекула и кристалл) или только одну из них. Очевидно, такие свойства, как температура плавления и кипения, твердость и вязкость, электрическая проводимость и т. п., относятся только к конденсированному состоянию вещества. С другой стороны, например, магнитные свойства (диа- или парамагнетизм) характерны как для кристаллов, так и для молекул. Элементы (изолированные атомы) характеризуются сравнительно небольшим набором ([)пзи-ческих свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. [c.32]


    Ядерная химия играет очень важную роль в аналитических применениях и при идентификации различных частиц. В какой-то мере с этим связана и спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия). Мы не собираемся здесь рассматривать довольно сложную экспериментальную технику этого метода, а остановимся лишь на его принципах. Они основаны на том, что атомное ядро обладает магнитными свойствами, зависящими от его состава и окружения в молекуле. Ограничимся простейшим атомом— водородом — и покажем, как можно отличить атомы водорода в метане СН4 от атомов водорода в бензоле С Н , пользуясь методом ЯМР-спектроскопии. [c.429]

    Парамагнетизм является результатом ориентации постоянных магнитных диполей в образце. Постоянные магнитные диполи обусловлены или спинами неспаренных электронов, или угловыми моментами электронов на атомных или молекулярных орбиталях. Электроны на орбиталях с /= 1, 2, 3. .. имеют угловой момент и поэтому обладают магнитным моментом. Ядра с магнитными моментами также характеризуются парамагнитными свойствами. Однако ядерный парамагнетизм составляет только одну миллионную долю парамагнетизма, обусловленного орбитальными моментами или спинами неспаренных электронов. Магнитные свойства ядер исследуют методом ядерного магнитного резонанса. [c.496]

    Метод ЯМР основан на взаимодействии магнитной компоненты электромагнитного поля с магнитными моментами атомных ядер. Установлено, что некоторые (но не все ) атомные ядра обладают собственным моментом количества движения (спином). В макромире механической моделью ядра можно считать вращающийся шарик, который имеет положительный заряд, распределенный по объему или по поверхности. Его вращение вызовет круговой электрический ток, и, как следствие,-магнитное поле, направленное вдоль оси вращения. Эта простейшая механическая модель позволяет понять, почему все ядра, имеющие спин, обладают магнитными свойствами, которые количественно характеризуются м нитным моментом ядра. Магнитный момент ядра ц и его спин являются коллинеарными векторами в пространстве длины двух векторов связаны соотношением [c.277]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]

    В какого рода соединениях можно ожидать поглощения вследствие магнитного резонанса ядер Магнитными свойствами всегда обладают ядра с массой, выражаемой нечетным числом Н , С , 0 , F , P i и т. д., и яДра с массой, выражаемой четным числом, но с нечетным атомным номером H В , и т. д. Ядра, подобные С , 0 , и др., с массой, выражаемой четным числом, и четным атомным номером не обладают магнитными свойствами и не дают сигналов ЯМР. По различным причинам наиболее широкое использование в органической химии получили спектры ЯМР атомов Н , и Р . Здесь будут рассматриваться в основном ЯМР-снектры водорода (Н ). [c.48]

    Приведенное ниже обсуждение позволит более четко уяснить связь между магнитно-резонансным поглощением ядер и другими типами спектроскопии. Многие атомные ядра обладают свойствами заряженных вращающихся теп, причем вращение заряда приводит к магнитному моменту, направленному вдоль оси вращения. Ядра, которые представляют особый интерес для химиков-органиков (Н1, С1з, N15 и Р1 >), имеют спин I, равный 1/2. Это означает, что величины их магнитных моментов в данном направлении могут иметь только два значения, равные по величине, но противоположные по знаку, соответствующие спиновым квантовым числом - - 1/2 и —1/2- Таким образом, если ядра помещены в магнитное поле Н с направлением г, то они могут быть расположены только по направлению поля = -Ь 1/2) или против него (/ = — /г) Как и в случае стрелки компаса в магнитном ноле Земли, наиболее выгодным является направление, совпадающее с направлением поля. Разность энергий между этими двумя состояниями ЛЕ должна быть пропорциональна напряженности поля Я, действующего на ядро. АЕ равна укН/2л, где /I константа Планка, а V — константа пропорциональности, характерная для каждого типа ядра (Н1, С1з, N15 и т. д.). Диаграмма энергетических уровней для системы магнитных ядер со спином 1/2 приведена на рис. 2-13. [c.49]

    Теория атомного ядра, на которой базируется описание ядерных свойств изотопов, представляет собой едва ли не самую обширную область современной физики и детально излагается и обсуждается во многих учебниках и монографиях (см., например, [2, 7-10]). Ядерные характеристики нуклидов весьма полно представлены в ряде справочников [1, 4, 11-16] и международных базах данных. Поэтому в настоящем разделе мы лишь кратко представим качественное описание тех ядерных характеристик изотопов, на которых основаны основные принципы их получения, регистрации или возможных применений. К их числу помимо массы и заряда можно отнести радиус ядра, энергию связи, магнитный и квадрупольный моменты, спектр возбуждённых состояний, сечения ядерных реакций. [c.20]

    В какого рода соединениях можно ожидать поглощения вследствие магнитного резонанса ядер Магнитными свойствами всегда обладают ядра с массой, выражаемой нечетным числом Н, , N, и т. д., и ядра с массой, выражаемой четным числом, но с нечетным атомным номером Н, 1 В, и т. д. Ядра, подобные 160, 5 и др., с массой, выражаемой четным числом, и с четным атом- [c.58]

    После неона идет натрий, с числом Менделеева 11. Вокруг его атомного ядра вращается 11 электронов два — в первом электронном слое, как у гелия, восемь — во втором, как у неона. Для последнего, одиннадцатого электрона во втором слое места нет — он нарушил бы равновесие электрических и магнитных полей, вызвав этим распад всей постройки. Последний, электрон натрия, вынужден поэтому одиноко поместиться в новом, третьем электронном слое. При химических взаимодействиях натрий способен терять только этот единственный электрон своей внешней электронной оболочки. Таким образом, последний электронный слой натрия подобен последнему электронному слою лития. В этом сходстве внешних электронных оболочек — причина сходства свойств обоих элементов ведь натрий тоже ярко выраженный металл и притом тоже одновалентный. Но у натрия последний электрон дальше от ядра, чем у лития, почему он и удерживается слабее. В этом и кроет- [c.209]

    Периодический закон указывает на периодический характер функциональной зависимости свойств элементов от заряда ядра атомов такой вид имеет эта зависимость для огромного числа самых разнообразных характеристик элементов. На рис. 21, а и б показаны графики зависимости атомных объемов и температур плавления, а на рис. 21, в — первых энергий ионизации атомов от порядкового номера элементов. Эти зависимости выражаются периодическими кривыми, имеющими ряд максимумов и минимумов. Аналогичный характер имеет подобная зависимость и для многих других свойств (коэффициенты сжимаемости, коэффициенты расширения, температуры плавления и кипения, магнитные свойства, энергии диссоциации, радиусы ионов [c.59]

    Магнитными свойствами обладают ядра с нечетными величинами масс (например, Н, С, 0,1 р, Р) и с четными массами, но нечетными атомными номерами (например, М). Ядра, обладающие как четной массой, так и четным атомным номерот. 0, 32 ) не имеют магнитных свойств и потому не дают сигналов магнитного резонанса. Детальное изложение основ и методов спектроскопии ЯМР приведено в многочисленных учебниках. Применение ЯМР в биологии описано в подробном обзоре Жардецких (]агс1е1гку, ]аг<1е1гку, 1962). [c.219]

    Как видно, из спектра ЭПР л особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигураций атомов и ионов, о свойствах атомных ядер. Для химиков ЭПР ценен как один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и. геометрии. Найда из спектра ЭПР газов, растворов, кристаллов (порошков) значение Н, отвечающее резонансной линии, по (19.15) вычисляют -фактор. Последний используют для идентификации радикалов, чему Ьпособствует вьгявление сверхтонкой структуры спектра. По я-фактору можно судить о симметрии радикала, а также определить энергии отдельных орбиталей. Сверхтонкое расщепление в спектре позволяет определить заселенность. у- и р-орбиталей атома с магнитным ядром в радикале, а отсюда — электронйое распределение и в известных случаях — валентный угол. Так, например, именно метод ЭПР сказал решающее слово в пользу угловой структуры радикала СН2. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. Величина -фак-тора и его зависимость от направления при этом определяются силой И симметрией ло.ия, создаваемого лигандами [к-6]. [c.78]

    Полинг предполагает, что образование связей в переходных металлах обусловлено электронами в с1-, з- и ]0-состояниях, а не только электронами в -состоянии. Одни лишь -орбитали недостаточны для образования связи, и только гибридизация между й-, 5- и р-ор-биталями может привести к очень стабильным гибридным орбиталям. С этой точки зрения в IV периоде для образования связи пригодны одна 45-, три 4р- и пять 3 /-орбиталей и при полном их использовании связь может осуществляться девятью орбиталями. Если бы для связи использовались все девять возможных орбита-лей, то при переходе от К к Си следовало бы ожидать непрерывного увеличения прочности связи. Однако максимум прочности решетки достигается у хрома, а далее прочность уменьшается по направлению к никелю. Это привело Полинга к предположению, что только некоторые -орбитали пригодны для образования металлической связи, С учеюм магнитных свойств принимается, что для образования металлической связи из пяти -орбиталей пригодны только 2,56. Остальные 2,44 -орбитали являются атомными орбиталями. Электроны на атомных -орбиталях связаны с ядром атома и не участвуют в образовании металлической связи. Электроны связывающих -орбиталей полностью отделены от атома и коллективизированы в системе электронов кристалла. В свою очередь, атомные -орбитали, содержащие электроны с неспаренными спинами, обусловливают магнитные свойства металлов. Таким образом, Полинг различает связывающие -электроны, которые участвуют в ковалентных связях между соседними атомами кристалла и обеспечивают силы сцепления в металле и атомные -электроны, ответственные за парамагнетизм. Связывающие электроны описываются гибридными 5р-функциями, атомные же — просто -функциями. [c.148]

    При создании очень однородного внешнего магнитного поля получают спектры высокого разрешения. Так, для этанола высокое разрешение вскрывает тонкую структуру пиков поглошения (рис 88, сплошные линип). Появление тонкой структуры является резуль татом так называемого спин-спинового расщепления. Атомные ядра взаимодействуют через свои электронные оболочки. Спины атомных ядер стремятся определенным образом ориентировать спины окружающих их электронов, т. е., в свою очередь,— сппны электронов соседних атомов, а через эти электроны ориентации передаются на соседние ядра и т. д. Для этанола пик поглощения протона гидроксильной группы расщеплен на три узких максимума вследствие взаимодействия с протонами метиловой и метиленовой групп. Тонкая структура спектров ЯМР тесно связана с числом и магнитными свойствами ближайших соседей относительно исследуемого ядра. Поэтому анализ тонкой структуры спектров ЯМР существенно рас цшряет и уточняет информацию, полученную от измерения химиче ских сдвигов. [c.189]

    Атомы элементов характеризуются сравнительно небольшим набором физических свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. Для простых веществ, особенно в конденсированном состоянии, набор физических свойств, т.е. существенных признаков, отличающих одно вещество от другого, весьма обширен. В качестве примера можно перечислить классы таких характеристик термодинамические, кристаллохимические, физико-механические, электрофизические, оптические, магнитные и иные свойства. Рассматривая закономерности изменения физических свойств простых веществ, целесообразно ограничиться сравнительно небольшим набором характеристик, которые обусловлены в первую очередь особенностями химической связи (молярные объемы, энта/сьпии атомизации, энергии диссоциации двухатомных молекул, температуры плавления, магнитная восприимчивость). [c.244]

    Положение максимумов резонансного поглощения в ЯМР-спек-отрах (химический сдвиг) зависит от магнитных свойств данного атомного ядра, от его электронного окружения, характера химической [c.345]

    Явление ядерного магнитного резонанса обусловлено тем, что некоторые атомные ядра, кроме заряда и массы, имеют также момент количества движения, или спин. Вращающийся заряд создает магнитное поле, и в результате ядерному моменту количества движения сопутствует ядерный магнитный момент. Гипотеза о существовании ядерного спина впервые была выдвинута Паули [1] для объяснения сверхтонкой структуры атомных спектров. Долгое время ядерный магнитный резонанс изучали на молекулярных пучках при этом были получены фундаментальные сведения о свойствах атомных ядер [2]. Однако результаты таких исследований представляли мало интереса для химиков, пока в 1945 г. Парсел в Гарварде и Блох в Стэнфорде независимо друг от друга не осуществили наблюдение ядерного магнитного резонанса в конденсированных средах. Парсел и др. [3] наблюдали резонанс в твердом парафине, а Блох и др. [4] — в жидкой воде. После того как в спектре этилового спирта были идентифицированы сигналы трех типов магнитно-неэквивалентных протонов [5], ядерный магнитный резонанс становится преимущественно полем деятельности химиков, и это положение сохраняется до сих пор. [c.13]

    В 1924 г. Паули для объяснения особенностей в структуре атомных спектров высказал предположение о том, что ядра некоторых элементов обладают магнитным моментом. Так как проверка этого предположения имела большое значение для теории строения ядра, были сделаны многочисленные попытки исследовать ядерный магнетизм, но только в 1946 г. двум группам физиков (под руководством Блоха и Пурселла) удалось открыть метод, позволяюш жй рзучать этот эффект на протонах в веществах, находящихся в любом агрегатном состоянии. При этом вскоре выяснилось, что спектры ЯМР зависят не только от свойств самого ядра, но и от окружения, в котором оно находится, а именно от электронного экранирования ядра. Так открылась возможность изучения природы химической связи в различных молекулах, качественного указания на присутствие отдельных групп в соединениях (функциональный анализ), их количественного определения н т. д. [c.262]

    В последние годы стало возможным изучать химические и физические свойства адсорбированных фаз и структуру поверхности твердых тел, используя относительно новые области спектроскопии, которые имеют дело со спектрами, лежащими в радиочастотном диапазоне электромагнитного спектра, обычно в области частот выше 10 цикл-сек (1 Мгц). Магнитные резонансные методы основаны на том, что атомные ядра и электроны обладают магнитными моментами и спиновыми моментами количества движения. При воздействии на ядра и электроны магнитного поля происходит зеема-новское расщепление квантовых состояний магнитного момента на ряд энергетических уровней. [c.118]

    Спиновые свойства прпсущи не только электронам. После того как в 1925 г. Паули выдвинул предположение о существовании спина электрона, подобные предположения пришлось вводить для объяснения свойств многих других элементарных частиц, таких, как нейтроны, протоны н атомные ядра в целом. Самым простым примером является ядро обычного атома водорода (ио не его изотопов), поскольку оно состоит всего из одного протона. Этот протон может иметь спин а или спин р. Для изолированного атома в отсутствие внешних полей нельзя однозначно выбрать систему отсчета, которая позволила бы обнаружить отличие. между этими спинами, но еслн атом водорода находится в несимметричном электрическом иоле, оно дает необходимую с1 стему отсчета, и удается экспериментально обнаружить различие между спинами. Такое несимметричное поле мол<ет появиться, когда атом водорода связан с другим атомом или когда атом водорода помещен во внешнее магнитное ноле или электрическое поле. [c.359]

    В 1925 поду физик Паули пришел к заключению, что в одном атоме не может быть двух совершенно одинаковых электронов, то есть таких электронов, которые не отличались бы друг от друга либо своей энергией, либо магнитными свойствами, либо формой орбиты, по которой они вращаются вокруг атомного ядра, либо наконец, положением этой орбиты в пространстве. Это правило, известное в современной физике под именем запрета Паули , играет большую роль в изучении законов, которым подчинено устройство электронных оболочек атомов. Некоторые иностранные ученые пытались было даже изобразить дело так, что якобы запрет Паули важнее закона Менделеева и что будто бы перио- [c.214]


Смотреть страницы где упоминается термин Магнитные свойства атомных ядер: [c.7]    [c.24]    [c.183]    [c.95]    [c.29]    [c.263]    [c.263]    [c.49]   
Смотреть главы в:

Ядерный магнитный резонанс в химии -> Магнитные свойства атомных ядер




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро

Свойства атомных ядер

Свойства ядра



© 2025 chem21.info Реклама на сайте