Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиамиды кристалличность

    Физические свойства. Полиэтилентерефталат — линейный полимер, способный образовывать прочные волокна. Физические свойства полиэфира зависят от природы и расположения полярных групп в цепи, так же как и для полиамидов. Кристалличность и молекулярная ориентация обусловливают высокую прочность на разрыв, необходимую для волокон, однако именно этими [c.105]


    Полиформальдегид является термопластичным материалом с высокой степенью кристалличности. По внешнему виду — это порошок или гранулы белого цвета. При комнатной температуре имеет высокую химическую стойкость к действию многих растворителей алифатических, ароматических и галогенсодержащих углеводородов, спиртов, эфиров и др. При действии концентрированных минеральных кислот и щелочей разрушается. Полиформальдегид является одним из наиболее жестких материалов, обладает высокой стойкостью к истиранию (уступает только полиамидам) и сжатию, низким коэффициентом трения, имеет незначительную усадку даже при 100—110°С и стабильность размеров изделий. Однако при повышенных температурах прочность его значительно уменьшается. [c.50]

    Полиамиды представляют собой полимеры линейного строения с высокой степенью кристалличности и малой полидисперсностью. Молекулярный вес технических полиамидов колеблется в пределах 8 000—25 ООО. [c.84]

    Для модификации свойств полиамидов проводят совместную поликонденсацию солей АГ, СГ и капролактама, взятых в различных соотношениях. Полученные при этом смешанные полиамиды имеют меньшую степень кристалличности, плавятся при более низкой температуре, обладают большей растворимостью Б полярных растворителях (в частности, легко растворяются в низших спиртах). [c.84]

    Линейные полиамиды представляют собой полимерные соединения высокой степени кристалличности. В неориентированном состоянии полиамид содержит до 50—60% кристаллических структурных образований. Отдельные упорядоченные участки макро- [c.446]

    Вязкость частично-кристаллических полимеров ниже Т , не является бесконечной , так как т кие полимеры обладают некоторой податливостью, возрастающей с у.меньшением степени кристалличности. Выше Г, температурная зависимость вязкости подчиняется закону Аррениуса. Некоторые полимеры (например, полиамиды) [c.258]

    Полярность полимера. Увеличение межмолекулярного взаимодействия в целом приводит к росту прочности. Так, кривая зависимости прочности от молекулярной массы для полиамидов проходит выше, чем для полиолефинов. Однако какие-либо количественные характеристики влияния полярности на прочность полимеров затруднительны, поскольку при переходе от одного полимера к другому одновременно с изменением полярности обычно изменяются молекулярная масса, кристалличность и т. п. [c.206]

    Например, степень кристалличности полиэтилена может достигать 80%. Наиболее выражена способность к образованию кристаллов у полиолефинов, полиамидов и полиэфиров. Кристаллическое строение имеет полимер карбин. Свойства кристаллических и аморфных полимеров существенно различаются. Так, аморфные полимеры характеризуются областью температур размягчения, т. е. областью постепенного перехода из твердого состояния в жидкое, а кристаллические полимеры — температурой плавления. [c.359]


    Рентгенограммы и электроно-граммы полиамидов указывают на высокую степень их кристалличности, т. е. на наличие значительных упорядоченных областей в массе полимера. Согласно представлениям о природе кристаллического состояния полимеров, [c.669]

    Другой областью применения полиамидов является производство из них литых изделий, пленок, клеев и т. п. Полиамиды являются термопластичным материалом изделия из них получаются литьем под давлением. Вследствие высокой кристалличности полиамиды в отличие от других термопластических материалов не испытывают постепенного размягчения прн нагревании, но но достижении определенной температуры сразу расплавляются и становятся жидкотекучими. Большая текучесть полиамидов обеспечивает хорошее заполнение пресс-форм. Поэтому полиамиды не требуют высокого давления при прессовании и литье. К недостаткам литьевых материалов относятся малая водостойкость, плохая окрашиваемость и большая усадка — до 16% при литье под давлением [77]. К достоинствам полиамидов как мате--риалов для литья относятся высокая ударная прочность и твердость, хорошая сопротивляемость истиранию и устойчивость при низких температу-. рах. Поэтому полиамиды применяются для изготовления массивных литых, изделий — шестерен, вкладышей для подшипников, вкладышей для муфт, труб и т. п. [10]. [c.671]

    N-Замещенный полиамид после его приготовления полностью аморфен, в то время как незамещенный полимер обладает средней кристалличностью. [c.108]

    В твердом состоянии макромолекулы П. обычно имеют конформацию плоского зигзага. Амидные группы макромолекул связаны между собой межмол. водородными связями, чем обусловлены более высокие т-ры стеклования и(или) плавления П. по сравнению с аналогичными т-рами соответствующих сложных полиэфиров. Наиб, высокой степенью кристалличности (40-60%) характеризуются П., имеющие регулярное расположение звеньев в макромолекуле, напр, полиамид-6,6 и полиамид-6. [c.607]

    В предпластикаторе происходит гомогенизация материала и в литьевую форму впрыскивается расплав полиамида с одинаковой в любой точке массы температурой и вязкостью. Благодаря этому отливаемые изделия имеют более высокую степень кристалличности, меньшие внутренние напряжения, повышенную прочность. [c.138]

    Полиамиды могут быть линейными, разветвленными, сшитыми, а также иметь циклическое строение. Степень кристалличности и характер надмолекулярной организации зависят от симметрии макромолекул и стерических факторов, которые определяют строение полимера и межмолекулярные взаимодействия, приводяш,ие к образованию упорядоченной структуры материала. [c.73]

    Очень часто трудно разделить влияние ММ и ММР на свойства полиамидов, поскольку поведение материала во многом определяется его кристалличностью, которая зависит от различных факторов. В том случае, когда кристалличность отсутствует, т. е. когда исследуются свойства расплава, вязкость полиамидов определяется среднечисловой молекулярной массой. Например, для ПА 6 в изотермических условиях выполняется следующее соотношение  [c.76]

    Кристалличность полиамидов, как и других полимеров, повышается, если молекулы характеризуются высокой степенью пространственной регулярности в расположении функциональных групп (стереорегулярность), небольшим объемом таких групп и возможностью возникновения межмолекулярных взаимодействий, способствующих плотной упаковке макромолекул. [c.77]

    Проницаемость тонких пленок полиамидов зависит от типа и степени кристалличности образца. При прочих равных условиях проницаемость уменьшается с возрастанием соотношения групп СНг СОЫН например, проницаемость ПА 66 по водяным парам при 20 °С приблизительно в 3 раза больше, чем проницаемость ПА 11. Для одного и того же полиамида проницаемость резко уменьшается с возрастанием кристал- [c.80]

    Большое влияние на равновесное влагосодержание оказывает степень кристалличности полиамидов. В табл. 3.10 на примере ПА 6 показано, что равновесное поглощение влаги уменьшается с возрастанием степени кристалличности [42]. [c.139]

    Хотя соотношение между гидрофильными и гидрофобными элементами и является ключевым фактором химической характеристики мембран, используемых для водных сред, последние не являются единственными в практике мембранного разделения. Разделение нефтяных фракций, например, может быть проведено с помощью полиэтиленовых мембран разной степени кристалличности. Такие мембраны уже были использованы для выделения испарением через мембрану л-ксилола из раствора, содержащего все три изомера. Аналогично в случае систем с полярностью, промежуточной между полярностью водных и углеводородных сред, разделение можно провести с помощью мембран, в которых установлено нужное соотношение между лиофобными и лиофиль-ными элементами по отношению именно к данному растворителю. Для такого в.одноподобного растворителя, как метанол, можно использовать мембраны те же или близкие к тем, которые используют для разделения водных растворов. Так и ацетатцеллюлозные, и мембраны из метилированного полиамида можно (с небольшими изменениями) использовать для разделения спиртовых растворов, в том числе и для низкомолекулярных спиртов. [c.70]


    Полиэфиры жирных кислот, например себациновой, сравнительно легко 1 идролизующиеся при действии растворов кислот и щелочей, находят применение в качестве искусственных восков, которые, как и природные воски, обладают высокой кристалличностью, низкой температурой плавления и резким переходом ич гвердого в жидкое состояние (рис. 102). Эти оке полиэфиры применяют как пласти( )икаторы и исходные ке.цества в синтезах некоторых полиуретанов и полиамидов. [c.422]

    С увеличением степени кристалличности или ориентации иолимера возрастает количество функциональных групп (всоседних макромолекулах), оказавшихся в непосредственной близости друг к другу, т. е. увеличивается количество водородных связен, я вместе с этим повышается прочность полимера. Как и для полиамидов, увеличение длины метиленовых цепей между имино-эфирными группами полиуретанов способствует повышению уп- [c.456]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Все синтетические волокна получают формованием из расплава, который выдавливают из сосуда через многоручьевую фильеру. Выходящий экструдат вытягивают и одновременно охлаждают. Затем не полностью отвержденные волокна подвергают продольной вытяжке, наматывая на тянущие барабаны при этом их диаметр уменьшается в 10—15 раз, что стимулирует процесс кристаллизации. Кроме того, перед использованием волокна подвергают дополнительной холодной вытяжке, чтобы увеличить степень кристалличности (см. разд. 3.7). На этой окончательной стадии обработки (структурообразования) существенно увеличивается прочность волокна. Обычно волокна получают из полиамида 6 и ПЭТФ. [c.479]

    Кристалличность полимеров обнаруживается электроне- и рентгенографическими исследованиями (полиэтилен, политетрафторэтилен, полиамиды, поливинилидеихлорид и др.). Оказалось, что закрис-тализованные области в полимерах перемежаются с неупорядоченными участками. Например, степень кристалличности линейного полиэтилена достигает 80%. [c.394]

    Полиамиды используются главным образом для переработки их в волокно. Полиамидные волокна обладают высокой прочностью, обусловленной высокой степенью их кристалличности, молекулярной ориентацией и сильными межмолекулярпыми связями, а наличие аморфных областей придает волокнам гибкость и обратимость вытяжки. Подробный обзор свойств н применения волокон из синтетических полимеров, в том числе полиамидных, и других изделий из этих смол приведен в монографиях [20, 30, 16], в обзорах [17, 18] и других работах [4, 15, 66, 71, 75]. [c.670]

    Из полиэфиров ценными техническими свойствами обладает нолиэти-ленторефталат, высокие механические свойства которого обусловлены теми же причинами, что и полиамидов. Полиэфиры алифатических дикарбоновых кислот не обладают такими свойствами. В частности, низкая температура их плавления (ниже 100°) препятствует использованию их в качестве волокнообразующих материалов. В отличие от них полиэтилентерефталат обладает высокой кристалличностью, высокой температурой плавления (265°) и образует прочные волокна, что объясняется большей жесткостью цепи благодаря наличию симметричных п, и -фениленовых группировок и полярностью эфирных групп [75]. [c.671]

    В приводимом ниже примере степень модификации может доходить до 50% (по весу). Необходимо при этом исходить 113 полиамида низкой кристалличности, вероятно, из-за трудности проникновения окиси этилена в кристаллические области. Преимущественный рост по-лиэтиленоксидных цепей по сравнению с образованием N-oк иэтилиpoвaннoгo полиамида указывает на то, что окись этилена охотнее реагирует с гидроксильной, чем с амидной группой. [c.85]

    По своей структуре продукты являются найлоном-1, т. е. полиамидами гипотетических N-замещенных карбамино-вых кислот. Л 1ожно получить полимеры с молекулярным весом, близким к 1 ООО ООО. Если R достаточно велик (например, н-оутил), полимеры растворимы в бензоле и образуют упругие пленки такие полимеры плавятся при температуре выше 200"" и являются кристалличными. [c.327]

    ПОЛИУРЕТАНЫ, полимеры, содержащие в осн. цепи уретановые группы —NH( 0)0—. Обычно содержат также эфирные (сложные, простые), карбаматные и др. группы. Линейные П.— вязкие жидкости или твердые аморфные и кристаллич. в-ва (степень кристалличности до 70% ) мол. м. 20—60 тыс. раств. в ДМФА, ДМСО, фенолах устойчивы в разбавл. минер, и карбоновых к-тах, алиф. и хлоруглеводородах, минер, и растит, маслах более стойки, чем полиамиды, к действию воды и окислителей. Сшитые П. могут быть мягкими высокоэластичными или жесткими в-вами не раств. в воде и орг. р-рителях по химстойкости близки линейным П. Получ. гл. обр. взаимод. изоцианатов (напр., 2,4- и 2,6-толуилен-, гексаметилен- или дифенил-метандиизоцианатов) с полиолами [обычно с простыми или сложиьвш олигоэфирами, содержащими группы ОН, гликолями и (или) триодами] в р-ре, массе или эмульсии. Выпускаются в виде пенополиуретанов или композиций, предназначенных для их получения (св. 90% от общего произ-ва). Примен. также в произ-ве пластмасс, эластомеров (см. Уре-тановые эластомеры), лаков, клеев, герметиков, искусств, кожи, волокон и др. Мировое произ-во ок. 3,6 млн. т/год [c.467]

    Кристаллич. ТП, имеющие высокую степень кристалличности (более 40-50%) и низкую т-ру стеклования, напр, полиолефины, фторопласты, полиформальдегид, алифатич. полиамиды, обычно эксплуатируют при т-рах выше т-р стеклования, когда аморфные области находятся в эластич. состоянии. Их деформац. теплостойкость определяет т-ра плавления, лежащая в интервале 110-360 °С. [c.564]

    Ароматические полиамиды -карборандикарбоновой кислоты [40] имеют высокие температуры размягчения (350, 480, 330, 420 °С для полиамидов м-фе-нилендиамина, бензидина, 4,4-диаминодифенилметана, 4,4 -диаминодифенилфлуо-рена соответственно) в отличие от аналогичных полиамидов л-карборандикарбо-новой кислоты, которые, не размягчаясь, начинают взаимодействовать с влагой воздуха при 220-250 °С. Первые два из приведенных выше полиамидов л-карбо-рандикарбоновой кислоты кристалличны и растворимы лишь в концентрированной серной кислоте. Второй и третий полиамиды аморфны и растворимы в органических растворителях, образуя из растворов в ТГФ прозрачные бесцветные пленки с прочностью на разрыв -1000 кгс/см , не изменяющие своих механических свойств при нагревании на воздухе до 400 °С. Полиамиды -карборандикарбоновой кислоты превосходят полиамиды с л<-карборановыми звеньями и по своей химической стойкости. [c.254]

    Рентгеноструктурный анализ линейных гомополиамидов в твердом состоянии, например ПА 6 и 66, показывает, что они представляют собой частично кристаллические материалы. Степень кристалличности никогда не достигает 1007о, обычно она ниже 50%. Размер кристаллитов в полиамидах очень мал и редко превышает 200 А, тогда как длина отдельной макромолекулы полиамида достигает 1000 А. [c.77]

    Важным фактором, определяющим скорость диффузии или химического взаимодействия низкомолеку-ляриых жидкостей с полиамидами, является наличие в полимере кристаллических областей. С увеличением степени кристалличности уменьшается химическая активность полиамидов и скорость диффузии в них различных низкомолекулярных веществ. [c.82]

    Сополиамиды, разветвленные и N-зaмeщeнныe полиамиды. Низкая кристалличность сополиамидов, разветвленных и Ы-замещенных полимеров значительно расширяет круг возможных растворителей и увеличивает их растворимость. Например, спирты и хлорированные углеводороды могут использоваться для получения растворов относительно высоких концентраций при комнатных температурах. Многие такие растворы имеют техническое значение — например, их используют для получения адгезивов и покрытий на основе полиамидов. В табл. 3.3 приведены данные, иллюстрирующие действие различных химических веществ на полиамиды. [c.88]

    Описанные эффекты обусловлены протеканием поликонденсации или деструкции под действием воды, но при этом не происходит обычного гидролиза амидных групп, так как не было отмечено возрастания числа концевых групп. Пока не предложено удовлетворительного объяснения такого процесса разрушения полиамида под действием воды. Повышение хрупкости поверхностных слоев полиамидов связано не с увеличением кристалличности полиамида, как можно было бы ожидать, а является результатом окисления, приводящего к разрыву макромолекул в отсутствие влаги, или совместного действия окисления и гидролиза, когда полимер подвергается термодеструкции во влажной атмосфере. Фактически, все три процесса (окисление, гидролиз и конденсация) при деструкции такого типа протекают одновременно, причем стадия, определяющая скорость суммарного процесса и конечный эффект, зависят от условий обработки. Влияние антистарителей сводится к макси- [c.92]

    Чарлсби [14] и другими было показано, что ПА 66 сшивается под действием ионизирующего излучения. Знсман и Бонн [15] нашли, что при увеличении дозы излучения (в области нескольких Мрад) степень кристалличности полиамида слабо уменьшается, а полимер становится прозрачнее, хотя и темнеет. Эти же авторы обнаружили, что при облучении полиамидов возрастает предел текучести при растяжении и модуль упругости, но материал становится менее эластичным и более хрупким. Модуль при растяжении увеличивается в два раза при дозе излучения 800 Мрад. [c.97]


Смотреть страницы где упоминается термин Полиамиды кристалличность: [c.420]    [c.55]    [c.450]    [c.669]    [c.102]    [c.455]    [c.459]    [c.460]    [c.14]    [c.473]    [c.629]    [c.62]    [c.118]   
Синтетические гетероцепные полиамиды (1962) -- [ c.360 , c.380 ]

Волокна из синтетических полимеров (1957) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности



© 2025 chem21.info Реклама на сайте