Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы ионообменные каталитические свойства

    Вофатит Р является продуктом конденсации фенола, формальдегида и сульфита натрия, который сульфируют концентрированной серной кислотой. В продажу Вофатит Р обычно поступает в виДе натриевой соли. Так как ионообменные смолы проявляют каталитические свойства исключительно в кислотной форме, приготовление катализатора заключается собственно в переводе соли в свободную кислоту., Вофатит Р по сравнению с другими ионообменными смолами проявляет большую активность и более устойчив по отношению к механическим факторам, не крошится и не подвергается истиранию в порошок. Активность теряет медленно и может, следо-, вательно, быть применен 10—20 раз. Установленное  [c.853]


    Направление научных исследований теоретическая физика термоядерная физика методы измерения параметров плазмы кинетика химических реакций синтез моно- и поликристаллов сверхчистых керамических материалов свойства керамических материалов при высоких температурах синтез меченых соединений разделение устойчивых изотопов 0 , В °, N методом изотопного обмена в процессе дистилляции электронная структура молекул органических соединений синтез органических соединений синтез и полимеризация новых мономеров синтез гетероциклических соединений химические материалы для защиты от радиации координационные соединения синтез и спектральный анализ порфиринов и их металлических комплексов химия высокомолекулярных соединений эффект радиации на полимеры физические и реологические свойства высокомолекулярных соединений ионообменные смолы оптически активные, хелатные и изотактические полимеры изучение механизма каталитических реакций, особенно гетерогенного катализа с использованием металлов и окислов металлов радиационная химия радиолиз водных растворов антибиотики, противоопухолевые и противотуберкулезные препараты меченые органические соединения полярографические исследования в области органической химии и биохимии микробиология фермен- [c.377]

    Каталитические свойства. Определяют, как правило, активность, селективность, стабильность и регенерационные характеристики. Обычно активность катализатора характеризуют так называемым индексом активности. Под ним понимают выход целевого продукта в процентах от теории, достигнутый в результате каталитического превращения стандартного сырья в стандартных условиях на лабораторной установке. Для ионообменных смол активность характеризуется обменной емкостью. В некоторых случаях качество катализаторов характеризуют степенью превращения сырья на этих установках. Иногда сравнивают испытуемый образец катализатора с эталонным, активность которого известна. [c.183]

    В последнее время внимание исследователей привлекали каталитические свойства ионитов. Уже очень многие реакции выполняются с помощью ионообменных смол — этерификация, гидратация, [c.73]

    Каталитические свойства ионообменных смол, особенно их гидролитическая способность, изучены весьма подробно [1]. Было показано, что неспецифический гидролиз пептидной связи в белках и пептидах протекает особенно эффективно на сульфокатионитах и в меньшей степени — на фосфорных смолах. Карбоксильные смолы, такие, как амберлит ШС-50, практически не гидролизуют белки. [c.172]


    До недавнего времени в качестве твердых катализаторов в промышленности и лабораторной практике применяли только неорганические вещества. В противоположность этому ферментативный катализ с его очень высокими скоростями и селективностью процессов основан на органических микрогетерогенных катализаторах. В последние годы обнаружены выдающиеся каталитические свойства у органических ионообменных смол по отношению к ряду реакций кислотно-основного типа. [c.269]

    В последнее время получило достаточно широкое распространение применение иммобилизованных клеток микроорганизмов, содержащих естественный набор ферментов. Преимущества их по сравнению с иммобилизованными ферментами заключаются главным образом в том, что при использовании иммобилизованных клеток отпадают стадии выделения, очистки и иммобилизации ферментов, которые, как правило, являются наиболее дорогостоящими при осуществлении полного технологического процесса. Далее, ферменты в микроорганизме находятся в наиболее естественном окружении, что положительно сказывается на их термостабильности, а также так называемой операционной стабильности (продолжительности работы в условиях опыта). Известно много примеров, когда после выделения из организма ферменты быстро теряли активность, а иногда их вообще не удавалось выделить в активной форме, в составе же клеток микроорганизмов они сохраняли каталитические свойства достаточно долго. В этих случаях применение целых клеток, а не отдельных ферментов становится единственно приемлемым вариантом. Наконец, иммобилизованные клетки, как и иммобилизованные ферменты, представляют собой гетерогенные биокатализаторы со всеми преимуществами их использования в технологических целях. Иммобилизация клеток обычно проводится их адсорбцией на водонерастворимых носителях (часто на ионообменных смолах), ковалентной сшивкой с помощью бифункциональных реагентов (например, глутарового альдегида) или захвата их в полимер, как правило, с последующим формованием в виде частиц определенного размера и конфигурации. Иммобилизация целых клеток микроорганизмов предотвращает их размножение и обычно увеличивает сохранность и срок работы в качестве катализатора по сравнению с необработанными клетками. [c.12]

    Реакции органических реагентов с неорганическими ионами в растворе могут давать продукты с различными свойствами например, они могут вызвать изменение цвета, люминесценции, растворимости, летучести. Продуктами реакции могут быть комплексные соединения, или новые органические вещества (образовавшиеся в результате окислительно-восстановительного либо каталитического действия неорганических ионов), или же иные формы самого реагента (рН-индикаторы). Помимо участия в этих типах реакций, органический реагент в растворе может адсорбироваться на осадке неорганического вещества, причем его адсорбция сопровождается изменением цвета реагента (адсорбционные индикаторы). Твердые органические реагенты, нерастворимые 6 данном растворителе, составляют специальный класс (ионообменные смолы, стационарные фазы в хроматографии и т. д.). Образование продуктов, которые не растворяются в данном растворителе (обычно воде), может быть использовано для гравиметрического определения, выделения или осадительного титрования того или иного иона. Если продукт реакции в воде менее растворим, чем в органическом растворителе,, не смешивающемся с водой, то такую реакцию можно использовать для экстракции растворителем любого из компонентов. [c.21]

    Ионообменный катализ — одна из важнейших и весьма быстро развивающихся областей применения ионитовых смол [1—3]. Однако наряду с несомненными и большими достоинствами синтетических ионитов как катализаторов процессов кислотно-основного типа в растворах (легкость отделения их от реакционной массы, простота регенерации, высокая избирательность, хороший выход, чистота получаемых продуктов и т. д.) они обладают и рядом существенных недостатков, прежде всего явно неудовлетворительной для многих целей химической и термической устойчивостью [4]. Это предопределяет необходимость поисков ионообменных катализаторов, свободных от указанных недостатков. Большого внимания заслуживают в этом отношении активированные угли, которые в зависимости от химической природы их поверхности, иначе говоря, от условий взаимодействия угля с кислородом, могут проявлять как анионообменные так и катионообменны е свойства [5—7]. Имелись, в частности, веские основания предполагать [8], что так называемый окисленный уголь Дубинина — Кройта, являющийся полифункциональным катионитом [9] , будет служить эффективным катализатором химических процессов, ускоряемых в растворах водородными ионами. Исходя из этого, в настоящей работе каталитическое действие активных углей исследовалось преимущественно на примерах протолитических реакций кислотного типа. Наиболее детально были изучены реакции инверсии сахарозы, гидролиза уксусноэтилового эфира и пинаколиновой перегруппировки, из которых первая и третья ускоряются только ионами водорода [10, 11], а вторая — как водородными, так и, особенно сильно, гидроксильными ионами [10]. [c.32]


    Для завершения конденсации и построения молекул с заданным составом и структурой продукт гидролиза подвергают каталитической перегруппировке. В качестве катализаторов используют едкий кали [3], серную и соляную кислоты [4], соли металлов, глину КИЛ [5], а также ионообменные смолы [6]. Используя каталитическую перегруппировку, можно получить олигомеры, по составу и свойствам близкие к заданным. Для построения молекул с регулярным чередованием звеньев в цепи и для синтеза олигомеров с фенильными концевыми группами используются реакции обмена. [c.43]

    Ценным свойством ионообменных смол является также их способность каталитически ускорять различные химические процессы. [c.255]

    Адсорбированные пленки имеют существенное значение в каталитических процессах. Развитие таких промышленных процессов, как, например, эмульсионная полимеризация каучуков, свидетельствует о том, что реакции, протекающие в самом простом и наиболее воспроизводимом поверхностном состоянии, а именно в мономолекулярной пленке, представляют интерес не только в теоретическом отношении. В качестве примера укажем лишь на некоторые из многочисленных реакций, протекающих на жидких поверхностях окисление красок и лаков, выделение урана из бедных руд, основанное на растворении в масле комплексных ионов уранила, образовавшихся ранее на границе раздела масло — вода, все эмульсионные реакции, а также реакции ряда веществ с ионообменными смолами, имеющими большую поверхность. Вопросы полярографии, как и вообще реакции на границе раздела ртуть — вода, в этом обзоре не будут рассматриваться. Свойства веществ на поверхности имеют огромное значение в ряде биологических процессов, как, например, переваривание жиров и фотоактивация красителей, а также процессов, происходящих под действием лекарственных веществ на оболочки клеток. [c.241]

    Следует отметить, что термин субстанциональные свойства очень удачен. Во-первых, он прямо указывает на то, что эти свойства принадлежат субстанции, т. е. первоначально взятому веществу такого-то химического состава. Во-вторых, он говорит именно о свойствах вещества, а не о составе. Дело в том, что каталитические свойства лишь в конечном итоге определяются химической природой вещества. Ближайшим же фактором, определяющим их, являются или электронные, или кислотно-основные свойства субстанции. Надо иметь в виду, что даже такие далекие друг ог друга по составу вещества, как, например, окисел металла и чисто органический полимер, в принципе могут обладать одинаковъгми полупроводниковыми свойствами и. следовательно, до известной степени одинаково катализировать реакции. То же относится к таким разным веществам, как протонные кислоты, некоторые соли и ионообменные смолы. [c.221]

    Катализатором в большинстве наших опытов служил крупнопористый безвольный уголь из фенол-формальдегидной смолы, активированный в токе углекислого газа при 900—1000° С до обгара приблизительно 50% массы угля и затем окисленный кислородом воздуха при 450° С (образец ОУ). В отдельных случаях использовали также обеззоленный технический уголь ВАУ, окисленный концентрированной азотной кислотой при 80° С [12]. Ионообменные свойства приготовленных указанными способами образцов полностью соответствовали данным работ [5—7]. Для сравнения изучалось также каталитическое действие исходных неокисленных углей, катионообменных смол КУ-2 и КБ-4П-2 и гомогенного катализатора — НС1 (в виде 10 — 10 N растворов). Все остальные использованные в настоящей работе вещества предварительно тоже подвергались тщательной очистке. Каталитические исследования проводили в водных растворах обычным статическим методом [13]. Навески воздушно-сухих катализаторов т изменялись в отдельных сериях опытов от 0,3 до 1,0 г, объем исследуемого раствора V — от 10 до 15,6 мл, длительность эксперимента I — от получаса до 10 час. Опыты большей частью ставились при 25, 50 и 75° С, пинаколиновая перегруппировка изучалась при 110 и 130° С (в запаянных ампулах). Содержание инвертного сахара в растворе определяли по методу Офнера [14], концентрацию карбоновых кислот — путем титрования щелочью, анализ пинакона осуществляли иодометрическим способом [11] pH исследуемых растворов измеряли стеклянным электродом. [c.32]

    Проведенные исследования обнаружили совершенно отчетливую связь между каталитическим действием активных углей и химической природой их поверхности (ионообменными свойствами) в то время как обычный, неокисленный уголь, электрохимический анионообменник [5, 6], не проявлял практически никакой каталитической активности (см., например, табл. 1), окисленный уголь Дубинина — Кройта, являюш ийся, как уже отмечалось, полифункциональным катионообменником [9], весьма эффективно ускорял все изученные процессы кислотного типа (помимо названных выше трех основных реакций, в этом плане были исследованы также реакции образования уксусноэтилового, олеиновобутилового эфиров, диметилового эфира адипиновой кислоты и получения 1,4-диоксана из этиленгликоля). Было установлено также, что, подобрав со-ответствуюш,им образом условия низкотемпературной обработки угля БАУ азотной кислотой, нетрудно получить катализатор, равноценный или даже превосходяш ий по активности образец ОУ, окисленный в токе воздуха при 450° С. Как видно из табл. 2, эффективность угля ОУ по Гам-метту [15] намного превосходит таковую не только карбоксильной смолы КБ-4П-2, но и сильнокислотного сульфокатионита КУ-2. [c.33]

    Книга посвящена теории и практике катализа ионообменными смолами —ионитами. В ней показаны преимущества, и своеобразие ионитовых катализа-гороБ по сравнению с растворимыми кислотами и основаниями, рассмотрены основные вопросы теории, в том числе кинетики органических реакций на ионитах, кратко описаны методы определения основных свойств и выбора ионитовых катализаторов, а Также аппаратура, применяемая в лабораторном и промышленном каталитическом синтезе и для исследования кинетики реакций. [c.2]

    Рассмотренные примеры показывают, что при изучении процессов переноса в формованных цеолитах, так же как и в активных углях [12—15 ] и макропористых ионообменных смолах [3], необходимо учитывать бипористый характер структуры таких пористых тел. Роль сопротивления массопереносу в транспортных порах и кристаллах цеолитов будет зависеть от конкретной системы адсорбтив—цеолит и условий проведения опытов. Выше уже отмечалось влияние температуры опыта и размера гранул [4, 6] и кристаллов [17, 19] цеолитов. Величины коэффициентов диффузии углеводородов в кристаллах цеолитов в значительной степени зависят от длины углеродной цепи [6, 24], степенп ионного обмена цеолитов [25, 26] и многих других факторов. Кроме того, транспортные свойства и каталитическая активность цеолитов могут меняться в процессе проведения каталитических реакций (см., например, [27, 28]). [c.165]


Смотреть страницы где упоминается термин Смолы ионообменные каталитические свойства: [c.398]    [c.47]    [c.67]    [c.67]   
Гетерогенный катализ в органической химии (1962) -- [ c.90 , c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменные свойства

Ионообменные смолы

Смолы свойства



© 2025 chem21.info Реклама на сайте