Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол при катализе

    При ацетилировании 2,3-ангидропроизводных 6-0-три-тилцеллюлозы (уксусный ангидрид, бензол, катализа- [c.29]

    Чувствительность гидрогенизационного катализа к загрязнениям. Исключительная чувствительность гидрогенизационных катализаторов к загрязнениям (промоторам и ядам) иллюстрируется исследованием Ипатьева [32, 60] по гидрогенизации в паровой фазе при атмосферном давлении над медными катализаторами. Сама медь является сравнительно малоактивным катализатором гидрогенизации и потому вполне подходит как объект для подобного типа исследований. С такими активными катализаторами, как никель, который при хорошем приготовлении способен количественно гидрогенизировать бензол при 50°, атмосферном давлении и времени контакта 1 сек., невозможно разобраться во всем многообразии влияния различных факторов в гидрогенизационном катализе. [c.266]


    Метод адсорбции паров бензола из потока азота Методы низкотемпературной адсорбции газов с ис пользованием принципов газовой хроматографии. . Методика института катализа СО АН СССР. .  [c.4]

    В бензоле и не экстрагирует его из водного раствора, так что в этом случае механизм межфазного катализа, по-видимому, не действует. [c.387]

    Применение методов прикладной статистики в задачах анализа и прогнозирования свойств катализатора требует корректного учета специфики решаемых задач и возникающих ограничений. Так, в гетерогенном катализе широко распространено явление взаимного влияния катализатора и реакционной среды. Примером такой ситуации может служить гетерогенное окисление бензола и ксилола на ванадиевых катализаторах, когда вследствие разности в восстановительных потенциалах обоих углеводородов меняется стационарный состав катализатора по слою. В работе (291 показано, что дегидратация алифатических спиртов на оксидных катализаторах (оксидах А1, Хг, 31) хорошо описывается уравнением Тафта с литературными значениями а. Однако коэффициент чувствительности а изменяется от оксида к оксиду. Следовательно, мы приходим к необходимости учитывать опосредованное влияние других переменных. Это обстоятельство делает необходимым использовать такие измерители статистической связи, которые были бы очищены от подобного влияния [21. [c.68]

    Окисление водорода. Гидрирование бензола и его гомологов при низких температурах Гидрирование ацетилена. Синтезы на основе СО Нг Необратимый катализ Зелинского. Дивинил из этанола по Лебедеву. Сопряжение окислительных реакций с эндотермическим синтезом в биокатализе [c.304]

    Превращения многих компонентов сырья в промышленных гидрогенизационных процессах начинаются с реакций насыщения водородом непредельных и ароматических связей. Во многих препаративных, а также в промышленных процессах (например, получение чистого циклогексана из бензола, см. гл. ссылки эти реакции являются целевыми, и их стремятся осуществить строго селективно. Поэтому реакции собственно гидрирования не могут не представить интерес для понимания механизма и взаимосвязи всего комплекса реакций, протекающих в условиях гидрогенизационных процессов. Кроме того, реакции собственно гидрирования всегда привлекали внимание исследователей возможностями изучения на них закономерностей катализа вообще. Вследствие этого рассмотреть все аспекты данной проблемы в рамках настоящей монографии не представляется возможным .  [c.130]


    Старейший метод алкилирования этиленом заключается в проведении реакции в жидкой фазе с безводным хлористым алюминием в качестве катализатора. Эта реакция является частным случаем классической реакции Фриделя — Крафтса, она была открыта в 1879 г. Большинство из известных льюисовских и бренстедовских кислот активны в алкилировании олефинами. Однако для катализа жидкофазного алкилирования бензола э иленом хлористый алюминий оказывается предпочтительнее других кислот, хотя для повышения его эффективности обычно требуется применять сока-тализаторы или промоторы. При растворении хлористого алюминия в бензоле туда добавляют соляную кислоту , образующую [c.268]

    Термическая изомеризация коричной кислоты в цис- и /лранс-корич-ную кислоту температура 99,4 и 122,5° реакция превращения в цис-коричную кислоту первого порядка реакция взаимодействия с иодом имеет порядок, равный 1/2 из этого делается вывод, что катализ происходит посредством действия атомного иода Иод в бензоле (катализ с помощью атомного иода) 734  [c.505]

    Значения экспериментальных и вычисленных по уравненив (5) параметров и Л реакций ароилхлоридов с ариламинами в бензоле, катализи> руеных органическими основаниями. [c.430]

    Превращение циклогексана в бензол над платиновым или палладиевым катализатором было открыто Зелинским [48] в 1911 г. и с того времени эта реакция является объектом многочисленных исследований. Многие работы посвящены механизму реакции, в частности, с точки зрения геометрии каталитических структур. В этом отношении представляют интерес работы А. А. Баландина [2, 3] не только потому, что они объясняют гетерогенные реакции в геометрическом выражении, но и тем, что-они стимулировали развитие многих дальнейших исследований. Обсуждение этих работ не входит в задачу данной главы, однако, можно сослаться на очень хороший критический обзор Трапнеля Вклад Баландина в изучение гетерогенного катализа [45]. [c.172]

    Присоединение малонового и ацетоуксусного эфиров к а, р-непредельным альдегидам в условиях межфазного катализа в присутствии конц. NaOH и ТЭБА приводит к глубокому осмоле-нию исходных соединений. Однако проведение реакции с твердым поташем или карбонатом натрия и ТЭБА в бензоле позволяет получать приемлемые выходы продуктов [1093, 1301, 1837]. [c.223]

    В присутствии межфазных катализаторов ускоряется также образование бисульфитных производных ароматических альдегидов [1729]. Более необычным является опубликованный недавно трехфазный метод, который осуществляется в условиях кислотного катализа на полистиролсульфокислотной смоле растворенные в бензоле ароматические кетоны конденсируются с формальдегидом (водным), давая 4-арил-1,3-диоксаны с почти количественным выходом [1652]. При комнатной температуре и перемешивании в течение 30 мин был осуществлен синтез гли-цидных нитрилов О с выходом 55—80% из ароматических или алифатических альдегидов и кетонов и хлорацетонитрила в стандартной системе концентрированный раствор гидроксида натрия/катализатор [448, 1492, 1759]. При этом несимметрична [c.233]

    В условиях межфазного катализа (молярные количества Ви4ЫВг и бензальдегида, избыток хлорзамещенного соединения и 50%-ный НаОН) и при использовании гидрида натрия или трег-бутоксида натрия в ГМФТА наблюдалось одинаковое соот-нощение стереоизомеров Е, Р и О, что подтверждало одинаковую степень ассоциации и плотность первоначально образующегося промежуточного продукта. Другое соотношение стереоизомеров было получено при проведении реакции в ТГФ в присутствии ЫаОС(СНз)з [503]. Если же реакцию между а-хлор-фенилацетонитрилом и бензальдегидом проводить в бензоле в присутствии 50%-ного водного гидроксида натрия, то стереохи-мический результат реакции сильно зависит от того, имеется ли в реакционной смеси ТЭБА или нет [952, ср. также 1834, 1835]  [c.234]

    Гидролиз чистого а,а,а-трихлортолуола (С) до бензойной кислоты в 20%-ном водном растворе гидроксида натрия при 80 °С сильно ускоряется добавлением 0,01 М гексадецилтриме-тиламмонийбромида или в меньшей степени 0,006 М нейтрального ПАВ — брий 35. С 0,02 М Ви4Н+Вг эта реакция шла хуже [475]. Разбавление С бензолом при использовании катионного ПАВ увеличивает время реакции в И раз. Авторы интерпретируют эти данные как косвенное, хотя и не точное, доказательство эмульсионного или мицеллярного катализа, а не истинного МФК-процесса. [c.245]

    В химии карбонилов металлов межфазный катализ был впервые использован для восстановления нитросоединений действием Рез (СО) 12 в системе бензол/1 н. NaOH при комнатной температуре в присутствии катализатора ТЭБА или 18-крауна-б [547, 548]. Более эффективным катализатором оказался ТЭБА, в присутствии которого выходы достигали 60—90% . [c.375]

    Хлорид алюминия, А1С1з, играет роль катализатора в реакции алкили-рования бензола, в результате которой образуются его производные с алкильными боковыми цепями. Важным классом биологических катализаторов являются белковые молекулы, называемые ферментами. Эти молекулы имеют ла своей поверхности участки, называемые активными центрами, на которых осуществляется катализ. К активным центрам ферментов часто присоединяются атомы переходных металлов, которые становятся важными участниками катализа. Мы познакомимся с примером ферментативного катализа в разд. 21-10. [c.305]


    Б последнее время особое внимание уделяют я-комнлексам в катализе, роль которых в, гомогенных каталитических превращениях ненасыщенных соединений очень велика (см., например, статью Моисеева [4]). Хотя данные о гетерогенном катализе газофа ого гидроформилирования на сульфиде рутения [5] недостаточно однозначны из-за возможности протекания параллельной гомогенной р>еакции с летучими карбонилами металла, однако, из активности металлического палладия в реакциях газофазного окисления этилена в ацетальдегид и бензола в ацетилфенол [6, 71, можно сделать вйвод, [c.153]

    Наиболее отрицательное влияние на точность анализа может оказать реакция гидрогенолиза циклопентановых угловодородов в процессе дегидрогенизационного катализа циклопеитановые углеводороды, подвергаясь гидрогенолизу, превращаются в алкил-замещенные бензолы. Напри.мер, 7 -бутилциклопентан об азует смесь пропилбензола и метилэтилбензола [1]  [c.241]

    По Г. К. Борескову реакции гидрирования ненасыщенных соединений (олефинов, бензола, фенола, анилина) и гидрогенолиз связей углерод—гетероатом (обычно С—8) относят к группе гомо-литических каталитических реакций, в то время как реакции изомеризации и расщепления — к группе гетеролитических. Это не строгая классификация и есть группа процессов, в том числе и промышленно важных, в которых наблюдаются и гомолитический, и гетеролитический катализ К ним, в частности, относятся процессы каталитического риформинга и гидрокрекинга, осуществляемые на нолифункциональных катализаторах. [c.114]

    Влияние строения ароматического соединения при реакциях алкилирования в общем такое же, как при других про сссах электрофильного замещения в ароматическое ядро, но имеет свои особенности. Реакция алкилирования отличается сравнительно малой чувствительностью к электронодонорным заместителям в ядре. Так, активирующее влияние алкильных групп и конденсированных ядер при катализе реакции хлористым алюминием изменяется следующим образом (для бензола величина принята за 1)  [c.244]

    Каждая из реакций при умеренной температуре является прак-тичесчи необратимой. Так, константы равновесия при синтезе этилбензола из этилена и бензола при О, 200 и 500 °С равны со-ответ твенно 6-10 , 2,2-10 и 1,9. Однако при катализе хлористым алюминием и достаточно жестких условиях катализа алюмосиликатами и цеолитами происходит обратимая реакция п е р е-алкилирования (диспропорционирование) с межмолекулярной миграцией алкильных групп  [c.245]

    Кинетика гидрирования бензола на никеле, 1. Реакции в кинетической областТи, Кинетика и катализ, 7, № 2, 258 (1966). [c.543]

    Кроме влаги- бензол содержит тиофен и сернистые соедине-, ния, способствующие образованию смолистых веществ, загряз-/ няющих целевые продукты, и снижающие активность катализа- тора. [c.150]

    Алкилирование бензола пропиленом на твердых каталйза торах. Известны такие твердые катализаторы алкилировавйй бензола пропиленом, как фосфорнокислотный, катализаторы на основе оксидов и солей металлов, оксиды, модифицированные ВРз, аморфные алюмосиликаты, цеолиты и катиониты. Применение твердых катализаторов намного упрощает технологическую схему, позволяет автоматизировать процесс, исключает проблему коррозии аппаратуры, облегчает отделение Продуктов реакции, не требующих дополнительной очистки, Приводящей в гомогенном катализе к образованию стойких эмуль-сий и больших объемов сточных вод. Эти катализаторы мо р0 регенерировать и использовать многократно. [c.249]

    Влияние гидродинамических условий в зоне катализа, а также внешне- и внутридиффузнонного торможения на гетерогенные каталитические процессы отмечалось в работах [13, 62—64]. В результате этого влияния при гидрировании бензола (на начальных его ста- [c.158]

    Так как эта реакщш пдет лишь в присутствии катализатора и из полученной смеси бензола и циклогексана не удалось обратно получить циклогексен, то Н. Д. Зелинский назвал эту и аналогичные реакции необратимым катализом. Реакция была распространена и на углеводороды с двойной связью в боковой цепи метиленцпклогексан над Рс1-каталпзатором превращается в смесь метилциклогексана и толуола [481 [c.136]

    Реакция дегидрогепизационпого катализа циклогексана и его гомологов, протекающая в присутствии платиновых катализаторов (а также в присутствии палладия или никеля на окиси алюминия), при температуре 300° приводит к образованию с количественным выходом бензола и его гомологов, структура которых отвечает структуре исходных циклогексановых углеводородов. Эта реакция была открыта Н. Д. Зелинским в 1911 г. и в дальнейшем детально им исследована. Оказалось, что в отличие от условий с применением катализатора, состоящего из чистого никеля, в присутствии которого, как показал Сабатье, циклогексан превращается не только в бензол, но примерно на 30% расщепляется с образованием метана, в условиях, разработанных Н. Д. Зелинским, реакция в случае циклогексана и его ближайших гомологов протекает исключительно гладко, без образования побочных продуктов [239]. Реакция эта обратима  [c.501]

    Однако пока что во всем мире наиболее широко в качестве катализаторов применяют комплексные соединения хлорида алюминия с ароматическими углеводородами, несмотря на такие их существенные недостатки, как необходимость осушки сырья, образование хлористого водорода и хлорида натрия при промывке и нейтрализации алкилатов, коррозия аппаратуры и необходимость очистки сточных вод. Использование в большей мере хлорида алюминия вызвано и тем, что он является катализатором не только алкилирования, но и диспропорционирования, что снижает выход неизбежно образующихся лри алкилировании ди- и по-лиалкилнроизводных. На практике используют жидкий катализа-торный комплекс — хлорид алюминия в диэтилбензоле или в по-лиалкилбензольных фракциях, получаемых при алкилировании. Действие хлорида алюминия усиливается сокатализаторами, в качестве которых обычно используют хлористый водород или небольшие количества воды. Однако,. чтобы избежать разложения катализатора, бензол тщательно сушат перед лодачей на, алки- [c.53]

    В процессе аЛТ<илирования бензола с хлоридом алюминия циркулируют значительные объемы жидкого катализаторного комплекса. Причем в реакционной массе две жидкие фазы катализа- [c.54]

    Прекрасным примером каталитической реакции получения ароматических углеводородов является классический метод каталитической дегидрогенизации шестичленных нафтеновых углеводородов над платиновой или палладиевой чернью, разработанный Зелинским. При термическом крекинге циклогексана бензола практически не образуется, т. е. реакция дегидрогенизации в этих условиях не наблюдается. Продукты крекинга состоят в основном из открытых парафиновых и этиленовых углеводородов, образовавшихся в результате разрыва шестичленного ядра. В присутствии же платиновой или палладиевой уерни при температуре около 300° С наблюдается гладкая дегидрогенизация циклогексана (и других шестичленных нафтеновых углеводородов) без побочных реакций распада углеводородного ядра. Специфичность действия катализатора выражается также в-том, что-пятичленные нафтеновые углеводороды, парафины, а также двузамещенные (при одном углеродном атоме) циклогексаны, например-1,1-диметилциклогексан, вовсе не подвергаются дегидрогенизации в указанных условиях [Зелинский (66)]. Теоретическое обоснование-дегидрогенизационного катализа Зелинского разработано Баландиным (2) в его мультиплетной теории . [c.239]

    Необратимый катализ. В условиях каталитического риформинга из цик-логексена образуются бензол и циклогексан. [c.47]

    Если катализируемая система и сам катализатор находятся в одинаковом агрегатном состоянии (жидком, паро- или газообразном), катализ называют гомогенным. Примерами последнего могут служить хлорирование метана в присутствии паров хлористого сульфу-рила, образование сложных эфиров из спиртов и карбоновых кислот под действием небольших количеств серной или соляной кислот, реакции кислотного гидролиза и т. д. Если же катализируемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. Примерами гетерогенных каталитических реакций являются синтез метанола или высших спиртов из смесей окиси углерода с водородом над твердыми катализаторами, различные гидро- или дегидрирования, процессы дегидроциклизации, каталитический крекинг, окисление бензола в малеиновый ангидрид или нафталина во фталевый ангидрид и т. д. Гетерогенные каталитические реакции бэлее распространены и имеют большее практическое значение, чем гомогенные. [c.22]

    Так как эта реакция идет лишь в присутствии катализатора и из полученной смеси бензола и циклогексана не удалось обратно получить циклогексен, то Н. Д. Зелинский назвал эту и аналогичные реакции необратимым катализом. Этот процесс над Рс1- или Р1-катализаторами идет даже при комнатной температуре, но N1-катализатор не оказывает такого эффекта. Процесс протекает как бы через стадию дегидрогидрирования  [c.440]


Смотреть страницы где упоминается термин Бензол при катализе: [c.188]    [c.152]    [c.430]    [c.491]    [c.15]    [c.117]    [c.316]    [c.223]    [c.374]    [c.380]    [c.407]    [c.38]    [c.542]    [c.15]    [c.318]    [c.47]    [c.61]   
Изотопы в органической химии (1961) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Фридель—Крафте катализ, комплексы с производными бензола



© 2025 chem21.info Реклама на сайте