Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден трехвалентный

    Использование ионитов в качестве окислителей — восстановителей. Восстановительные свойства некоторых катионитов используются в количественном анализе. Например, сульфоуголь КУ-1 восстанавливает трехвалентное железо, шестивалентный молибден до пятивалентного, бихромат-ионы до ионов трехвалентного хрома..  [c.209]

    Определению плутония не мешают уран, молибден, алюминий, бериллий, галлий и, естественно, железо. Мешают марганец и хром, так как перманганат и бихромат, получающиеся в результате окисления двуокисью свинца, прекрасно титруются ионами Fe +. Перманганат может быть предварительно восстановлен щавелевой кислотой до обесцвечивания раствора. Хромат может быть восстановлен до трехвалентного хрома мышьяковистой кислотой, которая не восстанавливает плутоний. [c.239]


    Небольшие количества примесей, которые экстрагируются вместе с ураном, могут влиять на оптическую плотность. Выяснено, что трехвалентное железо экстрагируется в заметных количествах, но прибавление аскорбиновой кислоты полностью устраняет его влияние даже при отношении уран железо, равном 1 40. Ванадий, титан и висмут заметно извлекаются и завышают величину оптической плотности, молибден ее занижает. [c.119]

    Максимумы светопоглощения растворов молибден-роданидных соединений, полученных в отсутствие и в присутствии трехвалентного железа, находятся практически при одних и тех же длинах волн 0219, 623]. [c.25]

    Совместно с шестивалентным молибденом экстрагируются смесью (1 1) ацетилацетона и хлороформа [1061] алюминий, железо, ванадий и титан. Гидратированные ионы трехвалентного хрома ие взаимодействуют с ацетилацетоном и не экстрагируются. Это позволяет отделять молибден, алюминий, железо, ванадий и титан от хрома. Отделение производят при pH водной фазы 2,0. [c.53]

    В среде ацетатного буферного раствора (pH 5,2) шестивалентный молибден образует соединение буровато-фиолетового цвета, извлекаемое изобутиловым спиртом [121]. Другие элементы дают следующие окрашивания шестивалентный вольфрам — оранжево-желтое, серебро — желто-оранжевое, четырехвалентный титан — буро-красное, четырехвалентный ванадий — сине-зеленое, ниобий — зеленовато-желтое, висмут — желто-оранжевое соединение (извлекается изобутиловым спиртом), четырехвалентный селен—желтое, двухвалентное железо — темно-зеленое, трехвалентное железо — розовое. Осадки образуют двухвалентная медь (сине-черный), кадмий (белый), двухвалентная ртуть (желто-бурый, переходящий в белый от избытка реактива), таллий (буро-коричневый), свинец (ярко-желтый). [c.87]

    Трехвалентный молибден не взаимодействует с толуол-3,4-дитиолом [1087]. [c.90]

    Молибден можно обнаруживать в силикатных или сульфид-, ных минералах, а также сталях по ускорению восстановления метиленовой голубой сульфатом гидразина [672]. Для удержания вольфрама в растворе и маскировки трехвалентного железа к раствору прибавляют фториды. [c.103]

    Для отделения молибдена от ванадия при анализе сталей ванадий осаждают из растворов, содержащих трех- и двухвалентное железо, добавлением к избытку раствора едкого натра [899]. Полученный осадок гидроокисей железа содержит практически весь ванадий. Молибден остается в растворе. В случае сталей, содержащих менее 3% Мо, часть трехвалентного железа восстанавливают сульфитом натрия до двухвалентного состояния при нагревании. Анализируя стали, содержащие более 3% Мо, к раствору навески прибавляют хлорид двухвалентного железа. Нитраты и вольфрамовая кислота должны отсутствовать. Сульфаты, хром и никель не мешают. Разработанный метод позволяет определять до 10% Мо в сталях, содержащих любые количества ванадия при этом достаточно однократного осаждения. Если сталь содержит более 10% Мо, то часть молибденовой кислоты соосаждается с гидроокисями железа (при выработанных условиях). В этом случае необходимо произвести переосаждение. По имеющимся данным, метод обеспечивает получение надежных результатов [330, 626, 929]. [c.111]


    Отделить железо от молибдена [1143] можно совместным их осаждением 8-оксихинолином и осторожным растворением 8-оксихинолината трехвалентного железа в холодной 2 N НС1 (при нагревании растворяются заметные количества 8-оксихинолината молибденила). Способность 8-оксихинолинатов никеля, кобальта, марганца и трехвалентного хрома растворяться в [c.121]

    Шестивалентный молибден можно отделять от трехвалентного железа, а также меди, никеля, марганца и небольших количеств титана, пропусканием анализируемого сернокислого (но не солянокислого) раствора, содержащего перекись водорода, через колонку с катионитом СБС или вофатитом Р в водородной форме [6, 7, 238]. При этом анионы перекисного соединения молибдена переходят в фильтрат, а катионы названных элементов сорбируются. Метод был применен при анализе стали [6, 7], железной руды [6, 7], ферромолибдена [7], железных метеоритов [238]. [c.133]

    При определении в почвах молибден отделяют от большей части железа экстракцией диэтиловым эфиром в виде роданидных соединений после восстановления трехвалентного железа аскорбиновой кислотой [1543]. Роданидные соединения пятивалентного молибдена, полученные в отсутствие трехвалентного железа в растворе, экстрагируются неколичественно в выработанных условиях. [c.141]

    Молибден может быть определен в присутствии шестивалентного хрома (0,004—0,009 г). В этом случае осадок необходимо прокаливать до МоОз. Шестивалентный вольфрам осаждается реагентом из кислых растворов и мешает определению молибдена. Двухвалентный кобальт (0,1 г), никель (0,15 г) и медь (0,12 г) не мешают полученный в этом случае осадок промывают сначала 0,2 N НС1, затем 0,02 А/ НС1. В присутствии трехвалентного железа (0,8 г) и пятивалентного ванадия (0,008 г) прибавляют 1—2 г комплексона III. [c.166]

    При определенных условиях металлические магний и алюминий количественно восстанавливают шестивалентный молибден до трехвалентного состояния. [c.177]

    Метод очень удобен и прост, не требует какой-либо аппаратуры или дорогих реагентов и дает такие же точные результаты, как при восстановлении молибдена в серебряном редукторе. Если вместо алюминиевой пудры взять алюминиевую фольгу, то хотя молибден и восстанавливается количественно до трехвалентного состояния, но более медленно. Определению молибдена мешают все вещества, восстанавливающиеся металлическим алюминием. [c.178]

    Шестивалентный молибден количественно восстанавливают до трехвалентного состояния жидкой амальгамой цинка в среде [c.182]

Рис. 27. Титрование раствора, содержащего шестивалентный молибден, трехвалентное железо и двухвалентную медь, в среде НС1 с вольфрамовым электродом Титратор емкостью 250 мл. Температура 65—70°, N r Ij 0,09091. Тсг/Мо=0,008723 Кривая / 5,0 мл 0,2 М раствора NH,Fe(SO,)2, 5,0 мл 0,1 М раствора молибдата амно-тя (0,04795 г Мо) и 70 мл H I 2 1. Первый скачок находится прн 14,30 мл раствора r Ia, второй — при 25,40 мл раствора r lj. Рис. 27. <a href="/info/18903">Титрование раствора</a>, содержащего <a href="/info/701970">шестивалентный молибден</a>, <a href="/info/14646">трехвалентное железо</a> и <a href="/info/453813">двухвалентную медь</a>, в среде НС1 с <a href="/info/192548">вольфрамовым электродом</a> Титратор емкостью 250 мл. Температура 65—70°, N r Ij 0,09091. Тсг/Мо=0,008723 Кривая / 5,0 мл 0,2 М раствора NH,Fe(SO,)2, 5,0 мл 0,1 М <a href="/info/192717">раствора молибдата</a> амно-тя (0,04795 г Мо) и 70 мл H I 2 1. Первый скачок находится прн 14,30 мл раствора r Ia, второй — при 25,40 мл раствора r lj.
    Метод основан на восстановлении щестивалентного молибдена в сернокислотном растворе цинковой амальгамой до трехвалентного. Поскольку последний нестоек, то его раствор собирают в приемник, содержащий соль трехвалентного железа (железоаммонийные квасцы), которая окисляет молибден. При действии на полученную смесь перманганата калия молибден вновь окисляется до трех- и шестивалептиого состояния. Расход перманганата калия эквивалентен содержанию молибдена в исходном растворе. [c.117]

    При восстановлении до низших степеней валентности следует иметь в виду действие кислорода воздуха. Закисное железо, пятивалентный молибден, четырехвалентные ванадий и уран довольно устойчивы на воздухе. В этих случаях можно не принимать мер для предотвраш,ения действия воздуха. При восстановлении урана цинком или кадмием частично образуется трехвалентный уран при встряхивании на воздухе последний превращается в четырехвалентный уран таким образом, доступ воздуха здесь даже необходим. [c.370]

    Соединения двух- и трехвалентного молибдена и вольфрама. Молибден и вольфрам не дают с кислородом соединений низшей валентности, представляющих практический интерес. Молибден с кислородом образует оксид молибдена (III) М02О3 черного цвета известен и гидроксид Мо(ОН)з тоже черного цвета. [c.330]

    Фитиновая кислота, являющаяся хелатирующим агентом, соединяется с двух- или трехвалентными катионами (кальций, магний, железо, цинк, молибден) и может привести к потере этих элементов [105]. Соли фитиновой кислоты встречаются чаще всего у зерновых культур в форме смешанного фитата кальция и магния, распределенного в алейроновом слое и наружных зонах зерновки [19]. Эти соединения, вероятно, обусловливают дефицит минеральных веществ в тех районах мира, где белковое питание обеспечивается за счет зерновых культур [34]. [c.335]


    Мозер [965] всегда получал по методу Ридерера слишком низки для висмута результаты. Удовлетворительные результаты (ошибка 0,3% можно, по данным Мозера, получить, восстанавливая молибден в колбе, снабженной манометрической трубкой, и титруя раствором перманганата, установленному по висмуту. Однако метод отнимает очень много времени. Низкие результаты получаются вследствие частичного обратного окисления воздухом восстановленного молибдена, и это явление может быть устранено, если прошедший через редуктор Джонса раствор собирать в раствор сульфата трехвалентного железа [627, стр. 280]. В связи с вышесказанным молибдатный метод требует дальнейшей проверки. [c.104]

    Молибден осаждают сероводородом из раствора в смеси HF и H2SO4 при анализе молибден-титановых сплавов [1147]. Полученный осадок сульфида молибдена переводят в МоОз прокаливанием при 500°С, а трехокись молибдена взвешивают. Весь молибден должен находиться перед осаждением сероводородом в шестивалентном состоянии (пяти- и трехвалентный молибден количественно не осаждается сероводородом из кислых растворов). [c.11]

    Имеются явно ошибочные указания на то, что в окрашенных роданидных соединениях молибден находится в трехвалентном [668, 1069] или четырехвалентяом [831] состояниях. [c.20]

    Причины повышения. оптической плотности растворов роданидных соединений пятивалентного молибдена в присутствии ионов трехвалентного железа или двухвалентной меди пока не выяснены. Вероятно, усиление окраски растворов в этих случаях зависит от образования многоядерных комплексов, содержащих молибден, железо, (или медь) и роданид в молярном отношении Мо Ре(Си) = 1 1 [32а, 219]. Ионы трехвалентного железа влияют на окраску растворов молибден-роданидных соединений только при восстановлении посредством ЗпСЬ. Однако олово не входит в состав образующегося многоядерного соединения. Если вместо иона трехвалентного железа к первоначальному раствору был прибавлен ион двухвалентного железа (в виде соли [c.24]

    Пирокатехин-3,5-дисульфокислота представляет недостаточно селективный реагент на шестивалентный молибден [1539], поэтому последний нужно отделять осаждением а-бензоиноксимом. Сарма [1299] рекомендует восстанавливать трехвалентное железо дитионатом НгЗгОе или аскорбиновой кислотой. Шестивалентный хром восстанавливают сернистым газом, подкисленной перекисью водорода или аскорбиновой кислотой. [c.42]

    Тиогликолевая кислота взаимодействует с ионами пятивалентного молибдена при pH 1—6 [66]. При этом появляется желтое устойчивое окрашивание, несколько менее интенсивное по сравнению с тем, которое появляется с раствором молибдата аммония одинаковой молярной концентрации. При определенных условиях (pH 2,5—6) тиогликолевая кислота образует окрашенное в желтый цвет соединение, в котором молибден находйтся в шестивалентном состоянии [66], несмотря на то, что реагент обладает ясно выраженными восстановительными свойствами. Тиогликолевая кислота, а также дитиогликолевая кислота не взаимодействуют с ионами трехвалентного молибдена при pH 1—4 с образованием соединений, окрашенных в желтый цвет [66]. [c.69]

    Молибден в трехвалентном состоянии в форме (МН4)гМоС15 (солянокислый раствор) не образует характерно окрашенных соединений в случае добавления избытка тиояблочной кислоты при pH 1—4 [67 . [c.73]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующ им образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а иедь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]

    Для разделения вольфрама и молибдена Марбрэкер [1036] восстанавливал шестивалентный вольфрам при помощи солянокислого раствора ЗпСЬ до нерастворимого окисла синего цвета молибден при этом оставался в растворе в пятивалентном состоянии. Осадок синего цвета отфильтровывали, промывали 5%-ной соляной кислотой и прокаливали до трехокиси вольфрама. Из фильтрата выделяли олово металлическим гранулированным цинком, окисляли трехвалентный молибден избытком сульфата трехвалентного железа и оттитровывали двухвалентное железо раствором перманганата калия.-При недостатке раствора ЗпСЬ вольфрам полностью не выделялся в осадок избыток [c.117]

    Для разделения трехвалентного железа и шестивалентного молибдена [953] анализируемый раствор в 9 М НС1 пропускают через колонку с анионитом дауэкс I. В этих условиях оба элемента сорбируются. Затем элюируют Fe смесью 0,01 М НС1 и I М HF. При этом Мо остается на колонке. Молибден элюи- [c.129]

    Шестивалентный молибден можно отделить максимум от 3000-кратных количеств трехвалентного железа пропусканием анализируемого раствора с pH 1, содержащего лимонную кислоту (1 мол л), через колонку с катионитом СБС или вофатитом Р в водородной форме (7]. От двухвалентного железа молибден удается отделять в более широком интервале,pH (от 1 до 3) цитратсодержащего раствора. [c.133]

    Экстракция шестивалентного молибдена из бромистоводороднокислых растворов диэтиловым эфиром. Шестивалентный молибден и трехвалентное железо из растворов НВг экстрагируются диэтиловым эфиром сравнительно плохо [483, 1508, 1509]. Молибден экстрагируется главным образом в форме МоОз-2НВг [483]. [c.140]

    Ацетилацетон представляет селективный реагент для экстракционного выделения молибдена при анализе материалов, содержащих железо в качестве главного компонента, например различных легированных сталей [1059]. Шестивалентный молибден экстрагируют из среды 6 N Н2804 при этом вольфрам, медь, хром не экстрагируются. Большая часть трехвалентного железа не экстрагируется (в органическую фазу переходит около 3% Определение молибдена заканчивают фотометрическим роданидным методом после трудоемкого мокрого окисления ацетилацетоната молибденила. [c.143]

    Гринберг i 66] подтвердил возможность разделения 0,1 мг W и 0,01—0,05 мг Мо экстракцией в форме соединения с толуол--3,4-дитиолом. Шестивалентный молибден восстанавливают и экстрагируют в среде 4 N НС1 [при помо щи 20%-ного раствора Sn la в НС1 (1 J)] при 20° С. Вольфрам в этих условиях практически не экстрагируется даже при 20-минутном встряхивании. Затем повышают концентрацию НС1 до 9—11 N, прибавляют раствор соли трехвалентного титана и экстрагируют образовавшееся соединение пятивалентного вольфрама с толуол-3,4-дитио-лом. [c.148]

    Большинство наиболее важных титриметрических методов определения молибдена основано на окислительно-восстановительных реакциях. Шестивалентный молибден восстанавливают до трехвалентного или пятивалентного состояния, а затем титруют его раствором какого-либо окислителя потенциометрически или визуально. Трехвалентный молибден окисляется на воздухе, особенно при низкой концентрации кислоты поэтому во многих случаях необходимо предохранять растворы от соприкосновения с воздухом или же прибегать к специальным приемам работы. Многие такие методы мало надежны и сложны. Более удобны титриметрические методы, основанные на восстановлении молибдена до пятивалентного состояния, например висмутом, с последующим титрованием раствором окислителя. [c.167]

    С. М. Анисимов, И. А. Каковский и В. С. Чайковская [И] рекомендуют определять молибден в молибдените и хвостах.от флотации следующим образом спекать их с карбонатом натрия при 700° С в фарфоровом тигле 3—4 часа, восстанавливать шестивалентный молибден амальгамированным цинком в редукторе Джонса и проводить прямое титрование полученного трехвалентного молибдена раствором перманганата калия. При определении небольших количеств молибдена следует добавлять избыток стандартизированного раствора перманганата калия, затем последний оттитровывать раствором соли Мора. Хорошие результаты для небольших количеств молибдена получают также при добавлении раствора трехвалентного молибдена к раствору ЫН4ре(504)2 в ортофосфорной кислоте и титровании перманганатом калия. В обоих случаях конечная точка титрования отчетлива. При определении <5% Мо необходимо вводить поправку на контрольный опыт. [c.179]

    Трехвалентный молибден, полученный при восстановлении металлическим цинком, кроме КМпО и Се(804)2 титровали также растворами KJO3 [864], метиленового голубого [929, 932]. [c.180]

    Наказоно [1124] восстанавливал шестивалентный молибден до трехвалентного состояния жидкой амальгамой цинка в сернокислом растворе в атмосфере СОз, затем он производил визуальное титрование раствором перманганата. Кано [894] после восстановления сернокислого раствора шестивалентного молибдена жидкой амальгамой цинка полученный трехваленгный молибден титровал раствором перманганата калия с платиновым ин-дика<торным электродом. Метод дает точные результаты. При титровании следует избегать сильного разбавления раствора. Г. А. Панченко [239] титровал трехвалентный молибден, полученный восстановлением молибдата в среде НС1 или H2SO4 жид кой амальгамой цинка, раствором иода, [c.181]

    На кривых титрования сернокислых растворов зеленого соединения трехвалентного молибдена 0,1 N КМПО4 имеются два ясных скачка потенциала, соответствующие окончанию переходов Мо >->-М.о - -М.о 1 [631]. Однако определять молибден по первому скачку потенциала нельзя, так как расход раствора перманганата зависит от концентрации H2SO4. Расход раствора перманганата на окисление трехвалентного молибдена до шестивалентного состояния не зависит от концентрации H2SO4. В ЭТОМ случае результаты титрования хорошо воспроизводимы. Расход перманганата не зависит также от температуры в пределах 20—90° С. Вблизи конечной точки потенциал электрода при 60—80°С устанавливается быстрее. [c.182]


Смотреть страницы где упоминается термин Молибден трехвалентный: [c.373]    [c.209]    [c.379]    [c.213]    [c.33]    [c.48]    [c.173]    [c.178]    [c.180]    [c.182]   
Основы общей химии Т 1 (1965) -- [ c.374 ]

Основы общей химии том №1 (1965) -- [ c.374 ]




ПОИСК







© 2025 chem21.info Реклама на сайте