Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальсовые физические

    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]


    Ван-дер-ваальсовые силы невелики (около 47 кДж/моль) и очень быстро уменьшаются с увеличением расстояния между молекулами. Они проявляются при переходе вещества из газообразного состояния в жидкое, при кристаллизации сжиженных газов, физической адсорбции и других процессах. [c.104]

    Адсорбционные силы слагаются из валентных сил взаимодействия (химических) и более слабых ван-дер-ваальсовых (физических). [c.135]

    Адсорбционные силы слагаются из валентных сил взаимодействия (химических) и более слабых ван-дер-ваальсовых (физических). Роль тех и других при разных случаях адсорбции различна. Так, в самом начале адсорбции большинства газов, когда их давление мало, наблюдается химическая адсорбция с увеличением давления она уступает место физической, которая в основном определяет адсорбцию газов. [c.159]

    Исторически адсорбционные явления на поверхности твердого тела принято разделять на явления физической и химической адсорбции (хемосбрбции). К физической адсорбции относятся адсорбционные взаимодействия, в которых молекулы адсорбата ВС сохраняют, свою индивидуальность, а силы, ответственные за адсорбцию, аналогичны ван-дер-ваальсовым силам в реальных газах. При химической адсорбции адсорбируемая молекула образует химическое соединение с твердым телом ЛВС (рис. 191, а) благодаря силам обменного взаимодействия, включающим в себя в той или иной мере ионное взаимодействие. Двум видам взаимодействия соответствуют различные кривые потенциальной энергии и (х). Согласно Леннарду—Джонсу (1932 г.), кривая 2 (рис. 191, а) характеризует ван-дер-ваальсову физическую адсорбцию, а кривая /, обладающая более глубоким минимумом, — химическую адсорбцию. Равновесное расстояние Ха, определяющее положение минимума потенциальной энергии, при физиче- [c.465]

    Определение дипольного. мо.мента по из. еренному ]13,менению работы выхода при адсорбции требует знания природы адсорбционного процесса. Необходимо рассмотреть три вида адсорбции а) ван-дер-ваальсову (физическую) адсорбцию б) ионную адсорбцию и в) ковалентную хемосорбцию. [c.91]

    Когда сорбированный слой очень слабо связан (доказательством чего может служить диапазон давлений и температур, при которых достигается сорбционное равновесие), процесс называется физической адсорбцией . Она характеризуется быстрым и обратимым равновесием с газовой фазой. Измеряемая теплота адсорбции по порядку величины оказывается равной теплоте сжижения адсорбируемого вещества. Интервал температур, в котором осуществляется такая адсорбция, лежит значительно ниже критической температуры адсорбированного вещества. В общем случае этот интервал является довольно большим вблизи точки кипения адсорбированного вещества. Силы, за счет которых происходит физическая адсорбция, ио-видимому, те же самые, что и при сжижении или смешении двух жидкостей, и должны быть отнесены к типу ван-дер-ваальсовых сил. Адсорбируемое вещества может образовывать многомолекулярные слои на поверхности адсорбента при давлениях, достаточно близких к давлению пара адсорбируемого вещества при температуре эксперимента. При давлении, равном давлению насыщающих паров, твердая поверхность просто смачивается жидкостью. [c.536]


    Процессам физической адсорбции было посвящено большое число исследований [3]. Эти исследования имели огромную важность для характеристики поверхности катализатора, особенно при измерениях величины поверхности катализатора по измерению количества адсорбированного вещества, которое требуется для образования мономолекулярного слоя . Однака трудно предположить, чтобы слабые ван-дер-ваальсовы силы играли существенную роль в химическом катализе. [c.536]

    Полученные данные подтверждают возможность распространения физической теории на первую стадию коагуляции латексов электролитами. Константа сил ван-дер-ваальсова притяжения частиц в этой коллоидной системе, как следует из полученных [28— 30] данных, зависит ог степени насыщенности адсорбционных оболочек до состояния их, близкого к насыщению [41]. [c.257]

    После насыщения поверхности металла хемосорбированньш окислителем, что происходит обычно почти мгновенно и приводит к образованию монослоя окислителя, при низких температурах может иметь место и физическая адсорбция молекул окислителя за счет ван-дер-ваальсовых сил поверх хемосорбированного слоя (рис. И). [c.30]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    При физической адсорбции молекулы адсорбата сохраняют свою индивидуальность и удерживаются на поверхности адсорбента ван-дер-ваальсовыми силами. Попадая на поверхность адсорбента, молекула адсорбата удерживается силовым полем поверхности в течение некоторого времени, а затем десорбируется. В начальный период скорость адсорбции намного превышает скорость десорбции, но постепенно эта разница уменьшается, скорости выравниваются, т. е. наступает адсорбционное равновесие, и молекулы адсорбата образуют на поверхности адсорбента адсорбционный слой. При этом свободная энергия поверхности (АР) уменьшается. Адсорбированные молекулы имеют две степени свободы, т. е. могут перемещаться вдоль поверхности адсорбента. До адсорбции эти же молекулы имели три степени свободы. [c.38]

    При физической адсорбции силы, возникающие между молекулами адсорбента и адсорбата, имеют электрическую природу, зависят от расстояния г между молекулами и складываются из трех составляющих ориентационного /ор, индукционного 1/инд, дисперсионного /дисп, а также сил отталкивания между заполненными электронными оболочками атомов молекул. Все три составляющие сил притяжения в первом приближении пропорциональны Полный потенциал ван-дер-ваальсовых сил [c.39]

    Адсорбция твердыми поглотителями основана на избирательном извлечении вредных примесей из газа при помощи адсорбентов — твердых зернистых материалов, обладающих высокой уделЕ ной поверхностью. В газоочистке применяется как физическая адсорбция, основанная на ван-дер-ваальсовых силах, так и хемосорбция. В качестве адсорбентов для очистки газов применяют высокопористые материалы, чаще всего активированный уголь, силикагель и синтетические цеолиты (молекулярные сита). Для промышленной практики наиболее важны высокая поглотительная способность адсорбента, его адсорбционная активность, избирательность действия, термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, легкость регенерации, малое гидравлическое сопротивление потоку газа. Активированные угли различных марок и силикагели уже давно и успешно применяются в промышленности. [c.235]

    Между молекулами (атомами, ионами) в жидкости и растворе действуют физические (ван-дер-ваальсовы) и химические силы. Под действием химических сил в растворах образуются соединения разной прочности. Так, например, в классических опытах Д. И. Менделеева по измерению удельного веса растворов спирта в воде было доказано существование в растворе нескольких соединений спирта с водой. [c.203]

    В истинных растворах нефтяного происхождения взаимодействия между молекулами ослаблены. При этом соединения нефти характеризуются наличием только химических связей в самой молекуле. При определенных условиях, как уже было указано, стабильная молекула способна к физическим взаимодействиям с другими молекулами с образованием комбинаций молекулярных фрагментов — надмолекулярных структур. Формирование надмолекулярных структур является результатом сложных и разнообразных взаимодействий ван-дер-ваальсовых сил притяжения, радикальномолекулярных и химических взаимодействий. Наличие в молекулах жидкости постоянных диполей увеличивает межмолекулярные взаимодействия, может ограничить вращение молекул за счет направленного взаимодействия диполей с соседними моле- [c.50]


    Различают физическую адсорбцию, происходящую за счет дисперсионных (ван-дер-ваальсовых) взаимодействий молек ул адсор-бата с адсорбентом, образования водородных связей и других сил электростатического характера, и химическую адсорбцию (хемосорбцию), происходящую за счет образования химических связей между адсорбатом и адсорбентом. Для физической адсорбции характерны теплоты адсорбции -2 -5 кДж/моль, для химической адсорбции значения теплот обычно превышают 10 кДж/моль. Химическая адсорбция может сопровождаться диссоциацией молекул адсорбата и другими его химическими превращениями. [c.281]

    Первичные (химические) и вторичные (ван-дер-ваальсовы) поперечные связи образуют первичную и вторичную пространствен-н ле сетки в полимерах. При изучении деформации сшитых эластомеров было установлено существование дополнительной сетки с вторичными узлами двух видов. Один вид узлов при деформации необратимо разрушается, а другой после снятия нагрузки восстанавливается. Ван-дер-ваальсовы узлы в виде зацеплений не играют существенной роли в вязком течении, так как их время жизни менее 10 с, тогда как физические узлы в виде микроблоков надмолекулярных структур имеют время жизни 10 —10 с и определяют характер процесса Я-релаксации (см. гл. 5) и вязкое течение полимеров. [c.167]

    Растворы сходны как с механическими смесями частиц, так и с индивидуальными химическими соединениями. От первых они отличаются тем, что любой макроскопический объем раствора обладает таким же химическим составом и физическими свойствами, как и вся его масса. От химических соединений растворы отличаются тем, что их состав может изменяться в зависимости от количеств взятых компонентов и они не подчиняются закону кратных отношений. Так, состав водного раствора хлорида натрия может произвольно меняться в пределах, допустимых его растворимостью. В 100 г воды при 293 К можно растворить любое количество Na I в пределах от О до 36,8 г, что соответствует предельной растворимости соли при данной температуре. Растворы отличаются от химических соединений также и природой связи. Если для химических соединений характерны в основном ионная и ковалентная связи, то для растворов характерны более слабые ван-дер-ваальсовы, а в некоторых случаях и водородные связи. [c.79]

    Различают физическую, или ван-дер-ваальсову, адсорбцию и химическую адсорбцию, или хемосорбцию. В первом случае адсорбционные силы имеют ту же природу, что и межмолекулярные, или ван-дер-ваальсовы, силы. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. В нашем курсе мы будем рассматривать, главным образом, физическую адсорбцию и лишь в соответствующем месте укажем на принципиальное различие между обоими видами адсорбции. [c.81]

    Наличие глубокой потенциальной ямы на потенциальной кривой слева от положительного максимума объясняет механическую прочность коагулята. Частицы на близких расстояниях прочно связываются друг с другом в результате действия ван-дер-ваальсовых сил, и образовавшиеся агрегаты приобретают некоторые свойства твердого тела. Минимум потенциальной кривой, расположенный в области отрицательных значений энергии взаимодействия, очевидно, объясняется уравновешиванием силы молекулярного притяжения силой отталкивания электронных оболочек (силы Борна) и отвечает физическому контакту обеих частиц. Это наиболее устойчивое состояние системы, в котором она обладает наименьшей свободной энергией. [c.280]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]

    Когда газ проникает внутрь твердого тела, могут наблюдаться два различных процесса газ просто растворяется в этом теле, образуя твердый раствор, или вступает с ним в химическое взаимодействие. Когда газ уплотняется на поверхности твердого тела, можно констатировать или слабое взаимодействие между газом и твердым телом, аналогичное явлению конденсации, или сильное взаимодействие типа химической реакции. Первое явление называется физической адсорбцией, второе — химической, или активированной, адсорбцией — хемосорбцией. Пример хемосорбции — адсорбция кислорода на поверхности металлов. Часто физическую адсорбцию называют ван-дер-ваальсовой (силы, обусловливающие физическую адсорбцию, открыл Ван-дер-Ваальс). [c.164]

    Классификация межмолекулярных взаимодействий дает ясный физический смысл тому, как осуществляется ММВ. Поляризационный и дисперсионный вклады Е ол и Едсп) соответствуют поляризационной и дисперсионной составляющей ван-дер-ваальсовых сил. Поляризационный вклад определяется взаимодействием зарядов, индуцированных взаимным влиянием, двух молекул. [c.154]

    Молекулы взаимодействуют друг с другом. Для объяснения межмолекулярных взаимодействий были созданы химическая и физическая теории, предполагающие только химическую или только физическую природу межмолекулярных сил. Среди физических рассматривались ван-дер-ваальсовы силы, которые возникают в связи с ориентационным взаимодействием полярных молекул, обладающих постоянным моментом диполя, индукционным взаимодействием молекул, способных поляризоваться под действием соседних молекул, и дисперсионным взаимодействием мгновенных атомных диполей, имеющих постоянно меняющийся дипольный момент за счет несимметричного распределения зарядов колеблющихся ядер и двигающихся электронов. [c.25]

    Адсорбцию принято делить на физическую и химическую адсорбцию (хемосорбцию). Резкой границы между ними не существует, хотя в предельных случаях они различаются легко. Физическая адсорбция обусловлена межмолекулярными (ван-дер-ваальсовыми) силами. В простейшем случае, при адсорбции неполярного адсорбата на неполярном адсорбенте, эти взаимодействия неспецифичны, т. е. это универсальные, дисперсионные силы. При физической адсорбции не происходит химического взаимодействия между адсорбатом и адсорбентом, и молекулы адсорбата на поверхности не теряют своей индивидуальности. [c.212]

    В основе адсорбционной хроматографии лежит поглощение разделяемых веществ на твердой поверхности выбранного а,дсорбен-та. Необходимая для этого энергия поглощения обусловлена физическими ван-дер-ваальсовыми силами в системе адсорбат — ад- [c.220]

    Это так называемая хемосорбция-, она в отличие от физической адсорбции обусловлена действием сил химической связи, а не ван-дер-ваальсовых сил, и усиливается с нагреванием (в определенных пределах), [c.157]

    В настоящее время принято различать химические связи пяти видов ионную, ковалентную, металлическую, водородную и ван-дер-ваальсовы взаимодействия. Такая классификация связана с введением определенных упрощений, идеализаций- и обусловлена отсутствием единой теории, способной одновременно описать все молекулы. Отнесение химической связи в конкретной молекуле к тому или иному виду не всегда является простой задачей. Иногда для этой цели приходится принимать во внимание целую совокупность химических и физических свойств. Сейчас пока отметим, что связи первых трех видов по своей прочности во много раз превосходят связи двух последних видов. [c.172]

    Адсорбция может осуществляться в результате взаимо,действий различной природы. В частности, между частицами адсорбата и поверхностью адсорбента всегда действуют ван-дер-ваальсовы силы, имеющие универсальный характер (см. 7.1). Они приводят к тому, что все газы адсорбируются на поверхности твердых тел, если температура не слишком высока. Адсорбция за счет ван-дер-ваальсовых взаимодействий называется физической адсорбцией. [c.315]

    Агломерацией называется самопроизвольное или направленное сближение частиц тонкодисперсных материалов под действием ван-дер-ваальсовых сил, сил аутогезии (при сближении частиц одного и того же вещества), адгезии (при сближении частиц различных веществ), а также капиллярных сил и сил поверхностного. натяжения (при наличии в дисперсной системе жидкости) вплоть до образования контактов между ними. Возникшее в результате сближения частиц физическое тело, независимо от его формы, прочности, [c.297]

    Существование сил притяжения между молекулами вещества было впервые учтено Ван-дер-Ваальсом, поэтому их называют ван-дер-ваальсовыми силами. Эти силы возникают в результате электростатического притяжения разноименно заряженных участков соседних молекул и, следовательно, осуществляют физическое взаимодействие в веществе. Наиболее просто объяснить притяжение друг к другу полярных молекул. Но прежде нужно рассмотреть, от чего зависит их полярность. [c.89]

    Водородная связь по энергии является промежуточной между физической связью — ван-дер-ваальсовыми силами — и химической — донорно-акцепторным взаимодействием. Энергия Н-связи составляет 20—30 кДж/моль (в воде — 25,5), достигая во фторово-дороде 34"кДж/моль. [c.94]

    Рядом авторов теоретически разработаны и экспериментально подтверждены представления о силах ван-дер-ваальсова притяжения коллоидных частиц. Притяжение молекул, обусловленное ван-дер-паальсовыми силами, складывается из трех компонентов ориентационного, индукционного и дисперсионного (лондоновского) эффектов. Наиболее универсальными являются дисперсионные силы, которые приобретают особое значение при взаимодействии коллоид-1ГЫХ частиц. Поскольку дисперсионные силы мало экранируются, т. е. мало зависят от присутствия соседних молекул, в отличие от других сил молекулярного притяжения, взаимодействие между коллоидными частицами получается суммированием дисперсионного притяжения между всеми молекулами, образующими обе частицы. Поэтому силы молекулярного (дисперсионного) притяжения коллоидных частиц простираются на значительные расстояния и могут вызвать слипание сблизившихся частиц. С позиций физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы, ее агрегативной неустойчивости. [c.96]

    Все благородные газы и многие молекулярные вещества с простыми симметричными молекулами кристаллизуются в молекулярных решетках с плотнейшей упаковкой. Это указывает на то, что для межмолекулярпых связей характерны ненасыщенность и нена-правленность. В молекулярных кристаллах из несимметричных молекул структура может быть более рыхлой (приспособленной к асимметрии молекул), но все же определяющим здесь выступает геометрический фактор, а не природа составляющих частиц. Структуры молекулярных кристаллов относятся к гетеродеслшческим в них сосуществуют два типа связи — внутри молекул и между молекулами. Связи, действующие между молекулами, намного слабее, чем межатомные внутри молекул. Поэтому именно мел<мо-лекулярные силы в первую очередь определяют многие физические свойства веществ (температуры плавления, твердость, плотность, тепловое расширение и др.). Низкие температуры плавления, высокая летучесть, малая твердость, незначительная плотность и высокий коэффициент теплового расширения — все это свидетельствует о слабости ван-дер-ваальсовой связи. Оценку величины энергии межмолекулярного взаимодействия можно получить, исходя пз экспериментальных данных по теплотам сублимации молекулярных [c.136]

    Сближение двух молекул, происходящее благодаря тепловому движению, приводит к их взаимному притяжению, которое вызывается силами различного происхождения. Эти силы объединяются под общим названием сил Ван-дер-Ваальса (или ван-дер-ваальсово взаимодействие). Истинные физические причины, порождающие это притяжение, ранее не были известны и только в последнее время расшифрованы составляющие сил, вызывающих ван-дер-ваальсово взаимодействие. [c.25]

    Физическая адсобция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется хорошей обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, близостью эффектов адсорбции к теплотам снижения или испарения (обычно 10... 80 кДж/моль). Такова, например, адсорбция благородных газов на угле. [c.268]

    Общий термин для всех явлений, связанных с поглощением, — сорбция. Следовательно, адсорбция и абсорбция представляют собой частные случаи сорбции. Сорбция может ограничиваться либо только взаимодействием за счет физических (ван-дер-ваальсовых) сил (гл. 1,19), либо одновременно сопровождается образованием нового вещества за счет проявления валентных (химических) сил (хемосорбция). [c.351]

    По другой теории (Поляни) природа адсорбционных сил чисто физическая, связанная с проявлением остаточных межмолекулярных ван-дер-ваальсовых сил. Согласно современным представлениям, при адсорбции проявляются все виды физических и химических сил, т. е. адсорбция — физико-химический процесс. [c.353]

    Наряду с химическими существенную роль играют молекулярные силы, определяющие такие физические процессы, как конденсация молекулярных соединений, адсорбция их и др. Эти силы определяют в значительной степени отклонение уравнения состояния газов от идеального. Поэтому эти силы называют иногда ван-дер-ваальсовыми. Молекулярные силы отличаются от химических, прежде всего величиной (энергия молекулярного взаимодействия приблизительно на порядок меньше химического), универсальностью (любые атомные системы на больших расстояниях притягиваются) и отсутствием насыщения (молекулярные силы аддитивны). Как и химические силы, молекулярные в конечном счете происходят в результате электрического взаимодействия, как и в химических силах электрическое взаимодействие может проявиться как электростатическое и как электронное. [c.336]

    В этой же серии опытов проверяли действие 5,0% ного водного раствора ацеталя I, уже находившегося в 30-суточном контакте с образцами, покрытыми пленкой нефти. Оказалось, что действие отработавших водных растворов ацеталя I незначительно снизилось (с 40 до 31%), но осталось значительно выше по сравнению с водой и водными растворами ОП-10. Как и в опытах с карбонатной поверхностью, отмыв наиболее интенсивно продолжается в течение первых суток опыта. Во всех жидкостях данной серии опытов зафиксирован отмыв нефти с поверхности, покрытой кварцем. Возможно, это объясняется различными видами адсорбции асфальто-смолистых веществ на поверхности кварца и карбоната [24]. Как отмечает автор этой работы, на поверхности кварца преобладает физическая адсорбция и молекулы адсорбата удерживаются на поверхности адсорбента ван-дер-ваальсовыми силами, а при хемосорбции, характерной для карбонатных пород, молекулы адсорбата образуют поверхностное химическое соединение с адсорбентом и смесь осуществляется ковалентными силами. По-види-мому, с поверхности, покрытой кварцем, происходит лучший отмыв нефти во всех исследуемых жидкостях, так как при физической адсорбции связи [c.154]


Смотреть страницы где упоминается термин Ван-дер-Ваальсовые физические: [c.351]    [c.426]    [c.181]    [c.34]    [c.263]    [c.100]    [c.131]    [c.349]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.120 ]




ПОИСК







© 2025 chem21.info Реклама на сайте