Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление и уксусного ангидрида

    Продукт дегидратации 2-пентанола был окислен разбавленным раствором марганцевокислого калия (реакция Вагнера), Полученное соединение обработано уксусным ангидридом. Напишите уравнения реакций и назовите все соединения. [c.68]

    Приведенный обзор методов получения янтарной кислоты позволяет предположить, что наряду с уже освоенным в ряде стран методом каталитического гидрирования малеинового ангидрида могут найти развитие методы, основанные на окислении уксусного ангидрида, и синтез из ацетилена, окиси углерода и воды. Как известно, уксусный ангидрид производится в значительных количествах по хорошо освоенной экономичной технологии. Осуществление процесса получения янтарной кислоты по описанной технологии не представляет значительных трудностей. [c.64]


    ОКИСЛЕНИЕ АЦЕТАЛЬДЕГИДА В УКСУСНУЮ КИСЛОТУ И УКСУСНЫЙ АНГИДРИД [c.156]

    Третий способ производства уксусной кислоты и уксусного ангидрида — каталитическое окисление ацетальдегида [c.273]

    Метод совместного производства уксусной кислоты и уксусного ангидрида окислением ацетальдегида является наиболее экономичным. В промышленности применяют два варианта этого производства. В первом варианте процесс проводится в присутствии этилацетата и вода удаляется из системы в виде азеотропной смеси с этилацетатом. Во втором варианте процесс ведется без постороннего растворителя, а в реактор подают большой объем газа, что обеспечивает сильную турбо-лизацию жидкой фазы и способствует удалению воды в виде пара. [c.315]

    В соответствии о вышеизложенным можно считать, что сырьевые источники для развития метода производства янтарной кислоты из малеинового ангидрида имеются Высокий выход при каталитическом гидрировании к сравнительно несложная технология позволяют предполагать, что стоимость янтарной кислоты, получаемой по этому методу, будет небольшой. Метод уже нашел практическое применение в ряде стран. Видимо, еще недостаточно широко распространен метод получения янтарной кислоты окислением уксусного ангидрида кислородом. Освоение процесса одновременного производства уксусной кислоты и уксусного ангидрида окислением ацетальдегида, позволяющее производить дешевый уксусный ангидрид, делает особенно перспективным этот метод получения янтарной кислоты. [c.77]

    Уксусный ангидрид, как и уксусная кислота, может производиться каталитическим окислением ацетальдегида и образуется также при реакции кетена с уксусной кислотой. [c.278]

    Выход продуктов окисления составляет 95—96% (при степени конверсии около 80%) содержание уксусного ангидрида в смеси зависит от соотношения этилацетата и уксусного альдегида. Так, при соотношении этилацетата и уксусного ангидрида, равном 1 4, была получена реакционная смесь, содержащая 13,5% уксусного ангидрида и 86,5% уксусной кислоты а при соотношении 23 1 — соответственно 68,5 и 24,5%. [c.157]

    В 1963 г. были введены в строй новые предприятия по совместному производству уксусной кислоты и уксусного ангидрида каталитическим окислением ацетальдегида в жидкой фазе и к 1965 г. производство уксусной кислоты этим методом составляло уже 17% от общего объема ее производства в стране. В эти же годы было освоено в промышленном масштабе производство уксусной кислоты карбонилированием метанола. [c.312]


    Выходящие из печи (где происходит окисление) газы освобождаются промывкой водой от ацетальдегида и выбрасываются из установки. Оксидат разделяется в ряде колонн. Сначала от оксидата отделяют избыточный ацетальдегид, воду и этилацетат (растворитель), после чего остаток в другой колонне разделяют на уксусную кислоту, уксусный ангидрид и катализатор. Последний возвращается снова в аппарат, где происходит окисление. Смесь, состоящую из ацетальдегида, этилацетата и воды, отделяют в специальной колонне от ацетальдегида, который также возвращается на окисление. Этилацетат и воду далее также разделяют и первый вновь используют как разбавитель и растворитель. [c.158]

    На рис. 81 представлена схема процесса окисления бутана, предназначенного в первую очередь для получения ацетальдегида, перерабатываемого затем в уксусный ангидрид [12]. [c.437]

    Ацетальдегид — ценный промежуточный продукт, используемый для получения других органических химических соединений (уксусной кислоты, трихлоруксусного альдегида, нормального бутанола, уксусного ангидрида). Он может быть получен при окислении этилена или этанола  [c.254]

    Совместный синтез уксусной кислоты и уксусного ангидрида. Ранее уже говорилось, что в определенных условиях при окислении альдегида параллельно с карбоновой кислотой образуется ангидрид  [c.406]

    Из I фракции сульфидного концентрата были получены НСО при окислении кислородом воздуха в присутствии уксусного ангидрида с выходом до 60—70%. Для более высокомолекулярных фракций сульфидного концентрата выход НСО был низок. Селективность окисления была также низка ,40%, и в продуктах реакции было много сульфокислот (до 35%). Эти опыты убедили нас также в том, что отделение уксусной кислоты, которая образовывалась при окислении, является нежелательной операцией, приводящей к увеличению вязкости сульфоксидов. [c.32]

    IX. Окисление ацетальдегида в уксусный ангидрид [c.295]

    Условия проведения реакции при окислении ацетальдегида в уксусный ангидрид [c.296]

Рис. 8. Схема процесса полунения янтарной кислоты окислением уксусного ангидрида Рис. 8. <a href="/info/24358">Схема процесса</a> полунения <a href="/info/516425">янтарной кислоты окислением</a> уксусного ангидрида
    ЗАВИСИМОСТЬ ВЫХОДА УКСУСНОГО АНГИДРИДА ОТ ОТНОШЕНИЯ ЭТИЛАЦЕТАТ АЦЕТАЛЬДЕГИД В ПРОЦЕССЕ ОКИСЛЕНИЯ АЦЕТАЛЬДЕГИДА [c.335]

    При непрерывном процессе [4] при температуре 40° окислению подвергали смесь из 1 весовой части ацетальдегида и 2 весовых частей этилацетата, к которой было добавлено 0,05—0,1% ацетатов кобальта и меди (отношение Оэ Си равнялось 1 2). Окисление вели до 96%-ной конверсии. Отношение уксусного ангидрида к уксусной кислоте в продуктах реакции равнялось 56 44 в отсутствие этилацетата оно снизилось бы до 20 80. В продолжение всего процесса непрерывно отгонялась смесь ацетальдегида, этилацетата и воды. После отделения водного слоя раствор ацетальдегида в этилацетате возвращали обратно в реактор. В настоящее время процесс проводят таким образом, что отношение ангидрида к кислоте в продуктах реакции равняется 70 30. [c.336]

    Этиловый спирт можно получать из этилена двумя способами сернокислотной гидратацией и прямой гидратацией. Второй метод может иметь по сравнению с первым известные преимущества, за исключением случаев, когда на месте производства синтетического спирта имеются потребители разбавленной серной кислоты. Этиловый спирт в основном используют для производства ацетальдегида, уксусной кислоты, уксусного ангидрида и -бутилового спирта. Ацетальдегид и уксусную кислоту можно также получать из ацетилена или прямым окислением пропана и бутана . В другом способе получения уксусного ангидрида из нефти исходят из пропилена (через ацетон). Нормальный бутиловый спирт производят в настоящее время каталитической гидроконденсацией пропилена с окисью углерода. Однако все эти пути обхода этанола как сырья не затормозили расширения производства синтетического спирта. Перед войной в США из этилена получали только 10% этилового спирта, а в 1956 г. — больше 70%. В Англии перед войной этиловый спирт из этилена вообще не производили. В 1956 г. доля синтетического спирта в общем его производстве составила 33—40%, а сейчас строится новый завод, который увеличит эту долю до 60—70%. [c.403]

Рис. 1Г, Схема получения янаарной кислоты окислением уксусного ангидрида Рис. 1Г, <a href="/info/143195">Схема получения</a> янаарной <a href="/info/411286">кислоты окислением уксусного</a> ангидрида

    Окисление низкомолекулярных, газообразных при нормальных условиях парафиповых углеводородов осуществлено на нескольких больших установках США. Окисление относится к числу типичных нефтехимических процессов. Целью его в настоящее время при использовании в качестве исходного сырья пропана и бутана является получение формальдегида и уксусной кислоты, вернее уксусного ангидрида важнейшим промежуточным продуктом п большинстве случаев является ацетальдегид. [c.150]

    Ацетальдегид — наиболее ценный продукт окисления. Он обладает высокой реакционной способностью и используется главным образом как химический полупродукт. Выработка его превышает выработку всех других альдегидов и составила в 1957 г. в США более 420 000 тп1год [121]. Из него получают уксусную кислоту и уксусный ангидрид, -бутиловый спирт, масляный альдегид, 2-этилгексанол, 1,3-бутилепгликоль, винилацетат, пентаэритрит и другие соединения. Большая часть ацетальдегида в США используется для синтеза уксусной кислоты и -бутилового спирта, которые являются сырьем для производства пластических масс и красок. [c.99]

    Так, полного и четкого выделения сернистых соединений из нефтяных фракций экстракционными или хроматографическими методами практически невозможно достигнуть из-за малой полярности этих компонентов, близкой к полярности ароматических углеводородов. Г. Д. Гальнерн с сотр. предложил окислять нефтяные сульфиды, трудно отделяемые от других компонентов, в суль-фоксиды перекисью водорода [169, 170]. При обработке светлых нефтяных дистиллятов эта реакция протекает в мягких условиях, и высокоселективно [171], и гетерогенным эмульсионным окислением удается получить сульфоксиды, полностью свободные от примесей тиофеновых производных [172]. Селективность окисления фракций, кипящих выше 350—360°С, значительно хуже даже при более жестких условиях (при гомогенном окислении 37%-ной Н2О2 в уксусном ангидриде). Например, среди продуктов окисления фракции С21—С24 ромашкинской нефти обнаружено около 30% производных тиофена и бензотиофена [173]. [c.22]

    Для ссвместного синтеза этих веществ используют два способа. В первом случае процесс осуществляют в барботажной колонне в среде зтилацетата при 50—70°С и 0,4 МПа. Окисление ведут воздух( м (а не кислородом) в присутствии смешанных катализаторов (например, ацетаты меди и кобальта в отношении 10 1 или 2 1). Растворитель, ацетальдегид и катализаторный раствор непрерывно подают в окислительную колонну и барботируют воздух через реакционную смесь. Пары, уходящие с воздухом, конденси-руьэтся в обратном холодильнике воду отделяют, а этилацетат возвращают в колонну. Летучий ацетальдегид поглощают из газа водой, регенерируя его при последующей отгонке. Реакционную массу ььшодят из окислительной колонны и направляют на разделение, отгоняя в первую очередь смесь растворителя с водой и непревращенным ацетальдегидом. Затем в других колоннах последовательно отгоняют уксусную кислоту, уксусный ангидрид и катализаторный раствор, который возвращают на стадию окисления. [c.407]

    При втором способе окисление проводят ири 55—60°С в отсутствие постороннего растворителя с теми же катализаторами (например ацетаты меди и кобальта в соотношении 3 1) при помощи воздухг, обедненного кислородом (7—9% об. Оа). В реактор, представляющий собой колонну с размещенными в ней змеевиками для охлаждения, подают смесь свежего воздуха с рециркулирующим газом, содержащим пары ацетальдегида. Реакционная масса состоит в основном из уксусной кислоты и уксусного ангидрида, в которых растворен катализатор. Отличительная особенность метода—подача в реактор большого количества газа через специальный газораспределитель, что способствует сильной турбулизации жидкости. Продукты отводятся (в виде паров) с уходящим [c.407]

    В случае окисления aцeтa ьдeгидa с использованием сложных катализаторов Со—Си, Мп—Си и в присутствии водоотводящих агентов (диизопропиловый эфир, этилацетат и т. д.) одновременно с уксусной кислотой образуется уксусный ангидрид. [c.199]

    По аналогии с окислением индивидуальных насыщенных алифатических и циклических сульфидов до сульфоксидов различными способами могут быть получены из концентратов сульфидов и НСО. Окислителями могут быть кислород воздуха с катализаторами, азотная кислота, гидроперекиси органических соединений и надкислоты, множество сильных неорганических окислителей типа КМПО4, перекись водорода. Наиболее хорошо в препаративном плане изучена реакция окисл-ения сульфидов перекисью водорода в среде уксусной кислоты, уксусного ангидрида, ацетона и без растворителя с добавкой каталитических количеств сильных минеральных кислот — хлорной, серной. [c.29]

    Ранее нами проведено было исследование воздействия уксусного ангидрида на окиси биссульфидов [4]. Взаимодействием с уксусным ангидридом при температуре 130—140° моно- и дисульфоксидов были получены ненасыщенные биссульфиды. В продуктах осмоления некоторых реакций были обнаружены насыщенные сульфиды и а-ацетилтиозфиры. Установлено, что при взаимодействии с уксусным ангидридом моно- и дисульфоксидов с алкильными или арильными радикалами образуются олефиновые или диолефиновые биссульфиды. Во всех изученных примерах двойная связь образуется в -положении к атому серы. Очевидно, смеси окисей биссульфидов из природных меркаптанов можно подвергать обработке уксусным ангидридом и получать таким образом ненасыщенные биссульфиды с двойной связью в -положении к атому серы. Подобные биссульфиды могут найти применение для самых разнообразных синтезов. Появление продуктов реакции с ненасыщенной связью при окислении биссульфидов иа природных меркаптанов связано с большой подвижностью протонов в -, р-, -7-положении к атому серы у подобных соединений. Отмеченные превращения ассоциатов окисей биссульфидов могут быть вызваны возникающим напряжением в молекуле у вторичных, третичных атомов углерода при окислении [15]. [c.65]

    Разработана технология получения изопропилфенантренкарбо-новых кислот, получаемых из фенантрена с выходом, близким к количественному, по трехстадийной схеме алкилирование фенантрена пропиленом, ацетилирование уксусным ангидридом и окисление гипохлоритом или кислородом воздуха. Получаемая смесь веществ общей формулы [c.108]

    Прямым окислением газообразных, жидких и твердых алканов в промышленных условиях получают [32] метанол, изопропиловый спирт, метилэтилкетон, уксусную кислоту, уксусный ангидрид, формальдегид, этанол, этиленгликоль, дихлорэтан, жирные кислоты, жирные спирты, гидропероксиды, алкилпероксиды и др. [33]. [c.198]

    Каталитическое окисление Вокер> Ацетальдегид — для получения уксусного ангидрида, химикатов и т. д. 140 581 [c.235]

    Если проводить окисление в растворителе при —15°, то гидроперекись ацетила (перуксусную кислоту) можно сделать основным продуктом реакции. Этот процесс в настоящее время осваивается в промышленном масштабе. Перуксусную кислоту намерены использовать для производства окисей замещенных этиленов, действуя ею на этиленовые соединения [10]. Риче [11 ] и Хитли [12] предложили механизм реакции, поясняющий образование уксусного ангидрида. [c.336]

    Для 5-метил-2-фуранкарбальдегида напишите реакции а) окисления б) восстановления в) конденсации с анилином, с концентрированным раствором КОН, со спиртовым раствором K N, с уксусным ангидридом в присутствии СНзСООНа. [c.161]

    Асфальтогеновые кислоты являются наименее изученным классом смолистых соединений нефти. Эти кислоты получаются экстракцией при помощи спирта осадка от осаждения смолистых веществ нефтяным эфиром или пентаном. При этом асфальтены в раствор не переходят. Природа асфальтогеновых кислот практически не изучена. Предполагается, что в них содержатся три активные группы, скорее всего гидроксильные, но одна из них, возможно, имеет кислотный характер. Асфальтогеновые кислоты имеют высокий молекулярный вес (до 800). Искусственно вещества подобного рода были получены К. В. Харичковым при окислении воздухом керосина в присутствии щелочи, однако приводимая им формула говорит о гораздо меньшем молекулярном весе, так же как и формула Гольде. Асфальтогеновые кислоты характерны не столько для нефтей и их смол, сколько для асфальтов, образующихся в природе путем испарения и окисления нефти на поверхности, поэтому возмон<но, что кислоты из асфальтенов происходят в результате окислительных процессов, что не позволяет, впрочем, отожествлять их с кислотами, выделенными из нефтяных смол. Асфальтогеновые кислоты дают сложные эфиры с уксусным ангидридом, что во всяком случае говорит о наличии в них гидроксильной группы, при нагревании осмоляются и превращаются в асфальтообразные вещества. Свойства солей этих,кислот далеки от свойств солей нафтеновых кислот. [c.152]

    Пулегон может быть получен из цитронеллаля (Тиман и Шмидт). При кипячении с уксусным ангидридом этот природный альдегид превращается в ацетат нзопулегола, который может быть окислен хромовой кислотой до изопулегона. При действии баритово ) воды изопулегон перегруппировывается в пулегон, причем в качестве промежуточного продукта, вероятно, образует гидрат, который затем легко отщепляет воду  [c.827]

    В аппарат для жидкофазного окисления, состоящий из большой пробирки, снабженной газораспылителем, водоотделителем и обратным холодильником, помещают 220 г (1,15 моля) эфира 4-этилфенилметилкарбинола и уксусной кислоты, 1 г окиси хрома и 15 г углекислого кальция. Реакционную смесь нагревает до 130—140 (масляная баня с электрообогревом) и в течение 28 час.через газораспылитель в смесь подают воздух. Затем отфильтровывают катализатор, прибавляют к фильтрату 100 мл уксусного ангидрида и 25 г уксуснокислого натрия и нагревают при 110 в течение [c.105]

    Кроме того, ее можно получить из ацетилена по реакции Кучерова (см. с. 87) или окислением этилового спирта. Уксусная кислота — слабая кислота, ее р/Са = 4,75. Она довольно широко используется в химической промышленности при производстве ацетатного щелка, красителей, сложных эфиров, ацетона, хлоруксусной кислоты, уксусного ангидрида, солей и т. д. Применяется в пищевой промышленности, а также в органическом синтезе (например, в качестве ацилирующего агента). [c.150]


Смотреть страницы где упоминается термин Окисление и уксусного ангидрида: [c.77]    [c.69]    [c.158]    [c.157]    [c.84]    [c.184]    [c.6]    [c.300]    [c.313]    [c.296]    [c.1112]   
Методы исследования углеводов (1975) -- [ c.251 , c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Диметилсульфоксид и уксусный ангидрид, окисление углеводов

Ксилопиранозид окисление смесью диметилсульфоксид—уксусный ангидрид

Окисление альдегидов. Производство карбоновых кислот и уксусного ангидрида

Окисление ацетальдегида в уксусную кислоту и уксусный ангидрид

Окисление ацетальдегида в уксусный ангидрид

Окисление насыщенных альдегидов. Производство уксусной кислоты и уксусного ангидрида

Окисление сахаров смесью диметилсульфоксид — уксусный ангидрид Линдберг

Получение уксусной кислоты и уксусного ангидрида окислением ацетальдегнда

Производство уксусного ангидрида окислением ацетальдегида

Уксусный ангидрид

Уксусный ангидрид как катализатор при окислении алкилбензолов

Уксусный ангидрид окисление пинена в уксусном



© 2025 chem21.info Реклама на сайте