Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты массопередачи барботажных

    Заполнение колонны неупорядоченной насадкой не приводит к значительному изменению скорости массопереноса в сплошной фазе. При расчете коэффициентов массопередачи в сплошной фазе применительно к колоннам с крупной насадкой удовлетворительные результаты дает использование формул, которые были получены для расчета массопереноса в распылительных и барботажных колоннах. [c.269]


    Эти зависимости были положены в основу определения ко-э4)фициентов массоотдачи и р у. Накоплен большой экспериментальный материал о работе различных контактных устройств - пленочных, насадочных и барботажных тарельчатых колонн с использованием смесей различного класса. Как правило, данные получены в области средних концентраций в режиме полного орошения. При этом было отмечено, что зависимость коэффициента массопередачи монотонно возрастает. [c.137]

    В барботажных аппаратах трудно определить истинную поверхность соприкосновения фаз, поэтому коэффициент массопередачи в этих аппаратах относят к единице площади тарелки. Уравнение массопередачи для одной тарелки можно написать в следующем виде  [c.622]

    Анализируя уравнение (11.68), следует отметить вытекающую из него независимость коэффициента массопереноса от размеров газового пузыря, что подтверждается и экспериментальными данными. Это положение несколько облегчает задачу расчета массообмена в барботажных реакторах, однако остается неопределенность относительно поверхности контакта фаз, для нахождения которой до сих пор нет надежных рекомендаций. Поэтому при описании кинетики газожидкостных реакций часто пользуются объемным коэффициентом массопередачи характеризующим собой количество вещества В, прореагировавшего в 1 м реакционного объема аппарата. В связи с этим следует вернуться к уравнению (И.55), в котором скорость реакции зависит от газосодержания системы. Появление в нем объясняется тем, что удельная поверхность а отнесена к реакционному объему аппарата Ур, т. е. к объему газожидкостной смеси. Если отнести поверхность контакта фаз к объему жидкости, участвующей в массообмене, то уравнение (И.55) не будет содержать параметра 1 — фр. Из этого следует, что для исключения 1 — ф из эмпирических уравнений, характеризующих объемный коэ ициент массопередачи, его нужно относить к объему жидкости, находящейся в реакционной зоне аппарата. [c.41]

    Высота аппаратов со ступенчатым контактом. Высоту аппаратов этого типа, в частности тарельчатых колонн, иногда выражают через объемный коэффициент массопередачи, согласно уравнению (Х,77) или (Х,77а). В барботажных аппаратах величина Ку должна рассчитываться на единицу объема слоя пены или эмульсии, в котором происходит в основном массообмен. Однако ввиду трудности определения объема подвижной пены коэффициенты массопередачи относят к единице рабочей площади тарелки. Эти коэффициенты массопередачи, обозначаемые через Кз, связаны с коэффициентами массопередачи Ку и Ку (например, прн расчете по фазе Ф ) соотношением [c.424]


    Перемешивание жидкости ведет к снижению средней движущей силы (см. стр. 243) и эффективность аппарата, несмотря на высокие значения коэффициента массопередачи и развитую поверхность соприкосновения фаз, оказывается низкой. Это подтверждается и опытом. Так, Шабалин [4, 51 показал, что увеличение высоты барботажного слоя приблизительно до 50 мм, приводит к значительному повышению степени извлечения компонента  [c.497]

    Изучение массопередачи в барботажных абсорберах осложнено тем, что поверхность контакта между фазами может значительно изменяться в зависимости от гидродинамических условий, в частности от скорости газа и плотности орошения. При этом трудно установить влияние указанных факторов в отдельности на поверхность контакта и на коэффициент массопередачи. [c.563]

    При изучении барботажных абсорберов обычно пользуются объемными коэффициентами массопередачи или коэффициентами массопередачи, отнесенными к единице рабочей площади тарелок. [c.563]

    Точное вычисление движущей силы на тарелках барботажных абсорберов затруднительно, так как она зависит от характера перемешивания фаз (стр. 243 сл.), которое еще недостаточно изучено. Обычно принимают тот или иной вид движения и перемешивания, например, для тарелок с перекрестным током среднюю движущую силу определяют по формуле (111-84), а для провальных тарелок— по формуле (111-66). Такой прием в известной степени условен и коэффициенты массопередачи, найденные на тарелках с различным перемешиванием, могут не совпадать, если только при расчете не было учтено влияние перемешивания на движущую силу. [c.564]

    Массопередача. При изучении абсорбции в барботажных абсорберах с механическим перемешиванием жидкости большинство исследователей определяли объемный коэффициент массопередачи в зависимости от удельной мощности (мощность на единицу объема перемешиваемой жидкости) и объемного расхода газа Ур. [c.606]

    Описаны опыты [220] по абсорбции СОз водой в аппарате с сплощным барботажным слоем, которому сообщались колебания частотой 20—2000 гц. Опытами установлено существование для каждой высоты слоя некоторых частот, соответствующих пикам объемного коэффициента массопередачи. Наибольшее влияние колебаний при высоте слоя 0,15 м отвечает частоте 125 гц (увеличение Ко на 70%) при больших высотах слоя пики уменьшаются и сдвигаются в сторону более низких частот. Определения формы и размера пузырьков, а также газосодержания слоя показали, что воздействие звуковых колебаний сводится к повышению газосодержания и увеличению поверхности контакта фаз. Коэффициент массопередачи, отнесенный к единице поверхности, при озвучивании уменьшается. [c.608]

    Концентрацию воды у поверхности нефтепродукта принимают равновесной. Удаление воды из нефтепродуктов интенсифицируется с увеличением площади контакта газовой фазы с жидкой, разности концентраций воды в них, коэффициента массопередачи. Площадь контакта может быть увеличена барботированием газа через жидкую среду, разность концентраций — созданием вакуума и понижением температуры. Поверхность контактирования при барботажной продувке газа [c.287]

    В барботажных аппаратах наблюдается интенсивная циркуляция жидкости по объему Коэффициент продольного перемешивания жидкости и объемный коэффициент массопередачи возрастает с увеличением диаметра аппарата. Барботажный аппарат с соотношением Я/с от 1 до 6 работает в режиме развитого барботажа как аппарат идеального смешения. На выход целевых продуктов, в тех случаях, когда они способны к дальнейшим превращениям, влияют не только температура процесса, концентрация компонентов, продолжительность реакции, но и степень смешения начальных и конечных продуктов [c.49]

    Скорость абсорбции не зависит от размера колец насадки и концентрации СО2 в газовой фазе. Коэффициент полезного действия барботажной тарелки [204] равен 0,07. Значения коэффициента массопередачи колеблются в пределах 0,63-10 — 1,89 X [c.246]

    Реальная поверхность массообмена в условиях интенсивного барботажного взаимодействия фаз не поддается точному измерению, поэтому для характеристики интенсивности процесса массообмена использовался объемный коэффициент массопередачи, равный количеству хлористого водорода, поглощенного в единицу времени единицей объема насадочного слоя Куу,нсь моль/(м /ч). [c.12]

    Высота абсорберов. При расчете высоты тарельчатой части абсорбера (т. е. расстояния между верхней и нижней тарелками) по уравнению массопередачи коэффициенты массопередачи определяют по уравнению аддитивности фазовых сопротивлений (см. гл. 15). Следует отметить, что эти коэффициенты и отнесены к поверхности массопередачи, которую в тарельчатых колоннах можно достаточно приближенно определить, как правило, для первого гидродинамического режима - барботажного при скоростях газа, не превышающих скорость свободного всплывания пузырьков. [c.90]


    В табл. 3.1 приведены критериальные уравнения массопередачи, полученные различными авторами в результате обработки большого количества экспериментальных данных и позволяющие рассчитывать частные коэффициенты массопередачи при взаимодействии фаз в барботажном слое, в слое насадки и в орошаемых трубках. Значения I и С в табл. 3.1 выражены в кг/(м -с). [c.88]

    Межфазовая турбулентность и гидродинамическая неустойчивость поверхности контакта являются в первую очередь следствием изменения поверхностного натяжения жидкости при массопередаче. Поверхностное натяжение жидкости оказывает сложное влияние на кинетику массопередачи. С одной стороны, поверхностное натяжение сравнительно мало влияет на коэффициенты массопередачи, однако, с другой стороны, оно оказывает существенное влияние на структуру барботажного слоя, размер пузырей или смоченную поверхность насадки. Состояние поверхности контакта фаз существенно зависит также от характера изменения поверхностного натяжения жидкости в зависимости от ее состава. В связи с этим различают смеси положительные , поверхностное натяжение которых снижается с увеличением концентрации легколетучего компонента да/дх < 0) и отрицательные , проявляющие обратные свойства (да]дх > 0) [75]. В положительных смесях высококипящий компонент в чистом виде имеет большее поверхностное натяжение, чем низкокипящий. Положительные смеси образуют [c.105]

    Для жидкофазного окисления углеводородов химическое превращение осуществляется только в жидкой фазе. Для любой "барботажной" газожидкостной системы для труднорастворимого газа и относительно медленных реакций сопротивлением газовой фазы можно пренебречь и поэтому коэффициент массопередачи будет определяться как коэффициент массоотдачи в жидкой фазе. [c.99]

    Коэффициент массопередачи К в уравнениях (140) и (141) относится к истинной поверхности массопередачи Р. В том случае, когда эта поверхность не может быть определена достаточно просто, например, при барботажном процессе или в насадочных аппаратах, коэффициент массопередачи относят к единице объема аппарата и называют объемным коэффициентом Ку, или к единице площади его характерного сечения Кр. В любом случае коэффициент массопередачи зависит от условий движения потоков и их свойств. Поэтому рассмотрим прел<де всего гидродинамические режимы, которые возникают при барботаже, пленочном течении и распылении жидкости. Они наиболее часто встречаются в практике дистилляции. [c.97]

    В результате исследования [561 было показано, что аппарат устойчиво работал при изменении скорости газа в кольцевом сечении между цилиндром-распределителем и цилиндром-сепаратором Wx = 1,8 -f-7,7 м/сек. Нагрузка по жидкости изменялась в пределах 0,84 — 8,33 кг/м -сек. При этом унос жидкости не наблюдался. Потеря напора не превосходит потери напора барботажных аппаратов. Объемный коэффициент массопередачи в 5—6 раз выше объемных коэффициентов массопередачи насадочных колонн. Описанное контактное устройство имеет существенное преимущество перед аппаратом Киршбаума и Штора, так как в нем достигается вращательное движение потока пара, способствующее усилению массообмена. [c.140]

Рис. 1-125. Сравнение коэффициентов массопередачи при абсорбции двуокиси углерода в барботажных и насадочных колоннах Рис. 1-125. <a href="/info/916745">Сравнение коэффициентов</a> массопередачи при абсорбции двуокиси углерода в барботажных и насадочных колоннах
    При проведении барботажных процессов в аппаратах с мешалкой (автоклавах) ни об"емный коэффициент массопередачи, ни критерий Боденштейна не равны соответствующим величинам в барботажных промышленных аппаратах без мешалки. [c.266]

    Действительная поверхность массопередачи редко бывает известна. Например, в барботажных абсорберах она зависит от режима движения фаз, в насадочных — от степени смачивания насадки. На практике обычно пользуются коэффициентами массопередачи, отнесенными к единице объема аппарата. [c.111]

    Коэффициент массопередачи характеризует интенсивность аппарата. Для абсорбера Вентури она во всех случаях выще, чем для других аппаратов (насадочного, барботажного и др.). [c.66]

    При использовании модели вытеснения [126, 130, 276] для описания движения потока пара с допущением постоянства элементов матрицы коэффициентов массопередачи по высоте барботажного слоя [126, 130, 181, 182] локальный состав пара определяется как . [c.81]

    Исследования подтвердили, что объемные коэффициенты массопередачи нелинейно уменьшаются с увеличением давления для всех типов тарелок в барботажных аппаратах п наса-дочных башнях в соответствии с уравнением [c.206]

    Было исследовано влияние следующих факторов на объемный коэффициент массопередачи скоростей газа и. жидкости, частоты и амплитуды вибраций, высоты газожидкостного слоя, живого сечения тарелок (дисков), расстояния между тарелками и концентрации солей. Установлено, что скорость жидкости в интервале 0,2-10 —1 2-10 м/с не влияет на интенсивность массообмена. Авторы [171] объясняют это тем, что в интервале линейных скоростей жидкости 10 —10 м/с, имеющих практическое значение для промышленных барботажных реакторов, скорость жидкости не влияет на поверхность фазового контакта при барботаже и, следовательно, на объемный коэффициент массопередачи. Это согласуется с результатами исследования [93] поверхности контакта фаз в барботажном аппарате с вибрационным перемешиванием. [c.124]

    Первоначальное уменьшение объемного коэффициента массопередачи при увеличении высоты барботажного слоя от 0,1 до 0,3 м авторы [171] связывают с некоторым [c.126]

    Основная задача исследований заключалась в нахождении закономерностей, характеризующих поверхность фазового контакта и коэффициент массопередачи при диспергировании жидкостей в барботажном экстракторе с циркуляционным контуром. [c.228]

    Для средне- и плохорастворимых газов, т. е. при Ма <0,5, повышение Ks с ростом менее значительно, чем для хорошорастворимых газов, хотя в большинстве случаев зависимость Kg от описывается линейными уравнениями (III.11). Влияние скорости газа на коэффициенты массопередачи газов разной растворимости исследовано [265] в лабораторной модели [А , = 40 мм = = 2,7 м /(м -ч)] при скоростях газа = 0,5 1,6 м/с, т. е. при условиях барботажного режима и перехода к пенному режиму. Авторы [265] наблюдали при повышении появление ячеистой пены, затем ее разрушение (с одновременным уменьшением Н и ПКФ) и возникновение взвешенного слоя подвижной нены. Тем не менее коэффициенты массопередачи Ks хорошо- и среднерастворимых газов непрерывно и линейно возрастали с повышением скорости газа (рис. III.2). Лишь в хемосорбционном процессе поглощения кислорода раствором сульфита натрия в присутствии ионов меди в качестве катализатора значение K s уменьшалось с ростом w . Следует отметить, что в опытах, результаты которых приведены на рис. III.2, в отличие от опытов, отраженных на рис. III.1, высота газожидкостного сдоя изменялась с ростом скорости газа. [c.132]

    Высота абсорберов. Рабочую высоту Я (расстояние между крайними тарелками) барботажного абсорбера находят методами, указанными в главе X. При расчете Н ло уравнению массопередачи коэффициент массопередачи определяется с помощью уравнения (Х,47) или (Х,48). Так как расчет поверхности контакта фаз на тарелке затруднителен, при обработке опытных данных по массопередаче в тарельчатых аппаратах коэффициенты массоотдачи относят чаще всего к сечению 5,, тарелки (точно определяемая величина), либо к объему пеиы V,, -= Лгж т или жидкости на тарелке Уд — /1 5 (где и /г — высота пены и слоя жидкости на тарелке). [c.465]

    Представляет также интерес опыт эксплуатации промышленного МЭА-абсорбера в производстве метанола (работа выполнена совместно ГИАП и Щекпнскпм химкомбинатом). Абсорбер диаметром 2,1 м производительностью по газу до 60 ООО м /ч (при н. у.) обеспечивал очистку газа, содержаш его 10—13% (об.) до 2—5% (об.) СОз-Число тарелок в абсорбере 28, расстояние между тарелками 0,4 м. Коэффициент массопередачи, отнесенный к 1 м рабочей части аппарата, для зоны а >> 0,5 составляет 25—45 м /(м -ч-кгс/см2) или 25,5-10 —46-10 м /(м -ч-Па) (объем газа при н. у.). Для зоны а <С 0,5 значения коэффициента массопередачи возра стают при увеличении скорости газа от 100 до 400 м /м -ч-кгс/см , что связано с ростом высоты барботажного слоя соответственно коэффициент извлечения для одной тарелки повышается от 0,07 до 0,15. [c.161]

    В большинстве случаев теоретическое определение коэффициентов массоотдачи проводят, рассматривая процесс массопереноса для каждой фазы в отдельности вне частицы (внешняя задача) или внутри частицы (внутренняя задача). Фактически это означает, что при решении задачи не учитывается влияние массопереноса в одной фазе на скорость массопереноса в др)той. Очень часто такая постановка вполне допустима. Во многих практических задачах перенос массы в одной из фаз либо вовсе отсутствует (растворение твердой частицы или пузырька однокомпонентного газа (пара) в жидкости, испарение капли однокомпонентной жидкости в газовом потоке и т. п.), либо скорость его значительно выше, чем во второй фазе. В последнем случае говорят, что процесс массопередачи лимитируется сопротивлением второй фазы. Так, при абсорбции хорошо растворимых газов и паров (NH3, НС1, HF, SO2, SO3, этанол, ацетон и др.) из газовой смеси водой в барботажных аппаратах скорость массопередачи лимитируется скоростью диффузии этих газов в пузырьках. Наоборот, процесс массопередачи при водной абсорбции плохо растворимых газов (О2, СО2, NO, N2O) лимитируется сопротивлением водной фазы. В обоих указанных случаях концентрацию переносимого компонента на межфазной поверхности со стороны г-й фазы можно считать известной и равной концентрации, находящейся в равновесии с постоянной концентрацией компонента во второй фазе. Таким образом, для решения уравнения (5.3.1.1) можно использовать граничное условие 1-го рода (см. подраздел 5.2.2). Это существенно упрощает решение задачи. В экспериментах определяют обычно не коэффициенты массоотдачи , (см. уравнение (5.2.4.1)), а коэффициенты массопередачи К(, определяемые уравнениями (S.2.6.2.). Однако проводить эксперимент стараются таким образом, чтобы массоперенос во второй фазе либо отсутствовал, либо протекал значительно быстрее, чем в первой фазе. Тогда коэффициент массоотдачи в первой фазе будет равен экспериментально определенному коэффициенту массопере- [c.274]

    В настоящее время определились три подхода к созданию кинетического расчета и осуществлению моделирования хемосорбционных процессов. Первый из них заключается в использовании зависимостей, основанных на эмпирических коэффици ентах массопередачи. Однако, поскольку представления о кинетике процесса, привычные для чисто массообменных процессов, в данном случае не пригодны, экстраполяция эмпирических значений Кг о. связана со значительными погрешностями. Эмпирический подход не отражает физической сущности процесса и не может объяснить, например, сильную зависимость коэффициента массопередачи при хемосорбции от концентрации передаваемого компонента в газе в барботажных колоннах и в насадочных аппаратах. Так, в аппарате с седловидной насадкой изменение Лг только с 10 до 20% (об.) приводит при определенных условиях к снижению К/а приблизительно на 307о. Количественно уменьшение К/а зависит от области протекания химической реакции, однако использование эмпирических значений Кг а при экстраполяции в сторону больших Лг приведет к существенной ошибке. В то же время следует отметить значительно более слабый характер указанной зависимости в аппаратах пленочного типа. Поэтому если мы воспользуемся эмпирической зависимостью /Сг й(Лг), найденной, скажем, в опытах на барботажной колонне, для моделирования аппарата пленочного типа, то погрешность может быть велика, причем высота моделируемого аппарата может быть завышена и занижена в зависимости от направления экстраполяции. [c.164]

    Характер кривой изменения поверхностного коэффициента массопередачи Кв в барботажных и пенных аппаратах в зависимости от линейной скорости газа определяется растворимостью газа. Величина Ка для всех газов возрастает с увеличением Шг до определенного максимума, лежащего в области различных линейных скоростей газа в зависимости от его свойств [8]. Для хорошо растворимых газо , скорость абсорбции которых определяется сопротивлением гадовой фазы, максимальное значение Ка находится за пределами пенного. режима (Шг>3,5 м/с). Для газов со средней и плохой растворимостью, скорость абсорбции которых лимитируется сопротивлением как газовой, так и жидкой фаз, максимум Ка соответствует аУг в пределах 1— 2 м/с для очень плохо растворимых газов, когда сопротивление массопередаче сосредоточено исключительно в жидкой фазе,— приблизительно при 0,5—0,8 м/с, т. е. при пограничной скорости газа, разделяющей барботажный и пенный режимы. [c.14]

    Опытных данных о коэффициентах массопередачи при барботаже имеется весьма мало. По В. И. Далю и М. А. Виткиной при абсорбции аммиака водой в колоннах барботажного типа коэффициент массопередачи определяется из формулы [c.603]

    Методика расчета. Влияние кего-ризонтальности и неплоскостности на эффективность работы барботажных тарелок определялось путем сравнения работы реальной тарелки (имеющей погрещности) с работой точно изготовленных тарелок. Сравнительный характер исследований позволил применить для определения опытных значений коэффициента массопередачи более простую методику, основанную на допущении полного перемешивания жидкости по длине тарелки. Согласно принятой методике коэффициент массопередачи в жидкой фазе [c.58]

    Установлено, что с ростом свободного сечения таре.-лок объемный коэффициент массопередачи уменьшается. Увеличение расстояния между тарелками приводит к падению объемного коэффициента массопередачи (рис. УИ-З). Авторы 171] объясняют это уменьшением удельной поверхности фазового контакта, так как-при большом расстоянии между тарелками часть пузырьков газа успевает скоалесцировать. Этот вывод, опять же, совпадает с результатами работы [93], в которой определялась величина межфазной поверхности в барботажном аппарате с вибрационным перемешиванием. [c.126]

    Вып есказанное подтверждает целесообразность создания на барботажных тарелках колебаний частотой 10 с . Такие колебания возбуждает незакрепленный дисковый клапан массой порядка 50 г. Серия исследований подтвердила это положение для всего исследованного диапазона скоростей газа (0,3—1,0 м/с), так как клапаны массой 52 г обеспечивали значительно более высокие значения коэффициентов массопередачи, чем клапаны массой 22 и 72 г. [c.75]

Рис. 27. Графики сопоставления показателей барботажных тарелок а — эффективность б — потеря напора на теоретической тарелке в — удельный коэффициент массопередачи г — техникоэкономическая эффективность I — колпачковые тарелки 2 — клапанные 3 — ситчатые 4 — противоточные 5 — типа У нифлюкс . Рис. 27. Графики сопоставления показателей барботажных тарелок а — эффективность б — <a href="/info/14010">потеря напора</a> на <a href="/info/12499">теоретической тарелке</a> в — <a href="/info/5414">удельный коэффициент</a> массопередачи г — техникоэкономическая эффективность I — <a href="/info/13648">колпачковые тарелки</a> 2 — клапанные 3 — ситчатые 4 — противоточные 5 — типа У нифлюкс .

Смотреть страницы где упоминается термин Коэффициенты массопередачи барботажных: [c.44]    [c.268]    [c.125]    [c.112]    [c.112]   
Абсорбция газов (1976) -- [ c.494 , c.495 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент массопередачи

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте