Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая реакция области протекания

    Когда скорость диффузии намного меньше скорости химической реакции, скорость процесса равна скорости диффузии. Эту макрокинетическую область протекания реакции называют внешнедиффузионной областью. Константа скорости диффузии очень слабо зависит от температуры и весьма заметно — от линейной скорости потока газа. Поэтому изменением указанных условий эксперимента можно вызвать переход из одной макрокинетической области в другую. В частности, переходу во внешнедиффузионную область благоприятствуют высокие температуры и малые линейные скорости газового потока. [c.73]


    Понятие меры завершенности химических реакций и химических инвариантов. Для снижения размерности системы дифференциальных уравнений кинетической модели, т. е. для представления ее в виде совокупности дифференциальных и алгебраических уравнений, вводится понятие химических инвариантов, которые являются линейными функциями от концентраций компонентов реакции и постоянны как в области нестационарного, так и стационарного протекания реакции. Химические инварианты изменяются только в случае, если в реакционной системе появляются новые химические реагенты или видоизменяются структурные виды. Химические инварианты для системы кинетических дифференциальных уравнений являются ее первыми интегралами. Следовательно, используя т = рГ Л химических инвариантов, удается понизить размерность системы дифференциальных уравнений на т, что существенно уменьшит время расчетов на ЭВМ. Аналогично если кинетическая модель представляется в виде системы нелинейных алгебраических уравнений, то совокупность т химических инвариантов также позволит снизить ее порядок па т. Отсюда следует, что для идентификации кинетической модели не обязательно анализировать изменения концентраций всех N химических реагентов, можно ограничиться анализом только N — [c.243]

    Не следует противопоставлять химическую кинетику и химическую термодинамику. На основе термодинамических закономерностей проектировщик, инженер или исследователь устанавливает в целом наиболее благоприятную, с точки зрения выхода целевого продукта, область протекания химических реакций. Химическая же кинетика позволяет в термодинамически разрешенной области рассчитать концентрации (не равновесные, а кинетические) продуктов реакций, материальный баланс, геометрические размеры реакционных аппаратов и оптимизировать технологические параметры процессов. [c.15]

    Цель этого этапа моделирования — определение границ кинетической области, а также оптимальных пористой структуры, формы и размеров зерен катализатора. Работами многих ученых " -созданы методы анализа скорости протекания химических процессов в пористых зернах и даны важнейшие рекомендации -зо, 52,5з JJo выбору указанных оптимальных параметров. Развитие математического моделирования при помощи ЭВМ открыло новые возможности дальнейшего совершенствования методов расчета и детального изучения механизмов химических реакций на пористых катализаторах. [c.472]


    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    Система уравнений (5.19), называемая основной системой кинетических уравнений, описывает динамику химической реакции как в стационарной, так и в нестационарной областях ее протекания. Размерность (5.19) равна М, так как она определяется размерностью вектора молекулярных видов М . При этом количество дифференциальных уравнений в системе может быть понижено с использованием химических инвариантов реагирующей системы. [c.245]

    Таким образом, существует ряд областей протекания процесса, в которых лимитирующей стадией является либо процесс теплоотвода, либо процесс подвода исходных веществ, участвующих в реакции, либо отвод продуктов реакции, либо само химическое взаимодействие. В сложных системах может быть большое разнообразие элементарных процессов и соответственно возможно существование большой группы областей протекания суммарного процесса, в том числе и такой области, в которой скорость возрастания энтропии определяется гидродинамическими процессами, когда термодинамическая движущая сила пропорциональна градиенту плотности пли градиенту давления. [c.18]

    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]

    При протекании химических реакций в гомогенной жидкой среде фактически реализуются два предельные режима 1) время реакции существенно меньше, чем время смещения потоков жидкости 2) время реакции больше времени смешения потоков жидкости. Так как времена смешения жидкости в промышленных устройствах могут быть сведены к достаточно малым значениям (порядка = 0,01 с), к первой группе относятся только классы реакций, протекающих с весьма большой скоростью, в основном ионные реакции и лишь некоторые органические реакции, например диазотирование отдельных аминов, разложение нестойких перекисей и др. Вследствие качественного различия указанных типов реакций промежуточная область между указанными режимами отсутствует. [c.101]

    Как мы уже знаем, гомогенные процессы характеризуются взаимодействием веществ в одной фазе. В гетерогенных реакциях, наряду с химическими превращениями, имеются стадии переноса веществ. Их влияние на процесс в целом зависит от условий его протекания. Если наиболее медленной стадией является химическая реакция, то говорят, что процесс протекает в кинетической области, если же, наоборот, звеном, тормозящим процесс в целом, служит перенос веществ, то говорят о диффузионной области. Что является лимитирующей стадией — взаимодействие или транспорт вещества,— можно установить по температурной зависимости скорости реакции в первом случае она гораздо чувствительнее к температуре, чем во втором. [c.103]


    Концентрации исходного вещества в ядре потока и на межфазной поверхности приблизительно одинаковы, и диффузия не оказывает влияния на скорость превращения, которая обусловлена сопротивлением химической реакции. Это — так называемая кинетическая область протекания процесса. [c.248]

    Выражение (1.33) представляет собой формулу аддитивности диффузионных и химических торможений процесса. Очевидно, что она корректна при условии квазистационарности процесса и при выполнении условий (1.27), т. е. прп наличии равновесия на границах раздела фаз. К сожалению, возмон ность использования формулы (1.33) ограничивается лишь тем простейшим частным случаем, для которого эта формула была получена, так как если порядок реакции по переходящему компоненту отличается от 1 или если процесс существенно нестационарен, уже не удается провести разделение переменных величин и выразить общее сопротивление процессу в виде суммы отдельных сопротивлений. Поэтому, сравнивая константы скоростей отдельных стадий процесса, можно выделить из них лимитирующую и дать четкое определение области протекания только при указанных ограничениях. [c.20]

    В данной главе изложены методы расчета степени извлечения и высоты прямо- и противоточных колонн при протекании необратимых и обратимых химических реакций в сплошной фазе с учетом продольного перемешивания. Методы разработаны в основном дпя потока сферических частиц, применительно к барботажным, распылительным и тарельчатым колоннам. Исключение составляет раздел 7.1, в котором рассматриваются методы расчета процессов в кинетической области, применимые дпя любого типа колонных аппаратов. [c.286]

    Соотношение констант скоростей диффузии и химической реакции определяет протекание процесса в кинетической, диффузионной или переходной (смешанной) области. Область протекания процесса определяется природой реагирующих веществ и условиями проведения процесса (давление реагирующих веществ, температура, интенсивность перемешивания, пористость поверхности и т. д.). [c.259]

    Рассмотренные разделения выполнимы в реакционно-ректификационном процессе, когда происходит сугубо каталитическая реакция и при отсутствии катализатора в укрепляющей и исчерпывающей частях колонны соответствующие трехкомпонентные смеси будут химически стабильными. Однако при этом возможности совмещенного процесса исчерпаны не полностью. На этот факт непосредственно указывают трехкомпонентные фракции, выделенные при первом заданном разделении в нижний продукт, и при втором заданном разделении — в Дистиллят. Составы обеих этих фракций отвечают области протекания прямого процесса. [c.203]

    По кажущемуся порядку реакции область протекания реакции определяется следующим образом. В кинетическом уравнении реакции йС/йт = —кС показатель степени при концентрации, соответствующий порядку реакции, может иметь различное значение тогда как для процесса диффузии я = 1. Таким образом, если л > 1, то определяющей стадией является химическая реакция и процесс идет в кинетической области. Если же л = 1, то это или реакция первого порядка, или химический процесс, идущий в диффузионной области. [c.90]

    Массоперенос при наличии химических реакций. При протекании гетерогенной химической реакции в зависимости от соотношения между сопротивлением массопереносу внутри самой жидкой (газовой) фазы (диффузионным сопротивлением) и поверхностным (химическим) сопротивлением, обусловленным конечностью скорости протекания самого химического превращения, говорят о диффузионной, кинетической и переходной областях протекания процесса. Поверхностное сопротивление определяется как отношение концентрации у поверхности к скорости реакции. Для реакции первого порядка поверхностное сопротивление — величина, обратная константе скорости гетерогенной химической реакции. [c.353]

    Позднее, с открытием и исследованием электрической, лучистой, химТ1ческой и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе.законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества работы, которое необходимо затратить для осуществ- [c.178]

    По результатам стартовых опытов методом максимального правдоподобия получены оценки всех параметров модели (4.5) и вычислены элементы информационной матрицы М (е). Их последующий анализ показал, что в области стационарного протекания химической реакции раздельная оценка всех констант невозможна и поэтому часть последних могут быть определены только в виде линейных комбинаций. При этом максимальное число конс- [c.190]

    При написании этой книги автор пытался систематизировать имеющийся в рассматриваемой области материал и показать аналогии, существующие между, казалось бы, не связанными процессами, такими как, например, химическая абсорбция и гетерогенный катализ. Предпринята также попытка представить теоретические результаты в форме асимптотических решений, диапазон применимости которых определяется физической интуицией. Рассмотрение всех взаимно накладывающихся явлений, которые составляют процесс переноса массы в условиях протекания химической реакции, представляет настолько трудную задачу, что практически всегда необходимы упрощающие предположения. [c.7]

    Протекание гетерогенно-каталитического процесса в интервале температур, когда лимитирующая стадия — собственно химическая реакция, называют кинетической областью гетерогенно-каталитического процесса. [c.436]

    Современные физико-химические исследования в любой конкретной области характеризуются применением разнообразных экспериментальных и теоретических методов для изучения различных свойств веществ и выяснения их связи со строением молекул. Вся совокупность данных н указанные выше теоретические методы используются для достижения основной цели—выяснения зависимости направления, скорости и пределов протекания химических превращений от внешних условий и от строения молекул—участников химических реакций. [c.21]

    Диффузионный режим осуществляется в тех случаях, когда условия благоприятствуют протеканию химической реакции, а перенос массы замедлен, как, например, при высоких температурах и давлениях и при малых скоростях газового потока. Кинетическая область наблюдается при низких температурах и давлениях и при высоких скоростях потока. В промежуточных случаях можно пользоваться уравнением [c.96]

    Для массопередачи, сопровождаемой мгновенной химической реакцией, как отмечалось вьппе, область протекания реакции весьма мала и может быть заменена фронтом. Концентрации реагирующих веществ в этом случае удовлетворяют уравнениям нестационарной диффузии [c.270]

    Быстрое сгорание кокса на образце, содержащем железо, обусловлено характером распределения кокса по сечению частицы катализатора. На этом катализаторе кокс в основном откладывается в периферийных солях частицы, в связи с чем средняя необходимая глубина проникновения кислорода в зону горения уменьшается. Это способствует улучшению регенерации катализатора в диффузионном режиме горения. Таким образом, в диффузионной области горения металлы, за исключением железа, почти не влияют на скорость выжига коксовых отложений. Полученные данные являются закономерными, так как в этой области скорость регенерации определяется скоростью подвода кислорода к зоне горения и отвода продуктов реакции из этой зоны, а не скоростью протекания химической реакции. [c.167]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    Лимитирующей стадией каталитического крекинга является химическая реакция на поверхности — в кинетической области протекания реакции. В случае применения цеолитсодержащих катализаторов, имеющих разветвленную пористую структуру, скорость процесса может лимитироваться диффузией реагирующих молекул в порах катализатора (внутридиффузионная область). Каталитический крекинг углеводородов является необратимой реакцией первого порядка. [c.95]

    Обычно лимитирующей стадией каталитического крекинга является собственно химическая реакция на поверхности (кинетическая область протекания реакции). В некоторых случаях для цеолитсодержащих катализаторов при неудовлетворительной пористой структуре матрицы скорость процесса лимитируется диффузией реагентов в порах (внутридиффузионная область протекания реакции). Так, по данным [39], для образцов промышленного шарикового цеолитсодержащего катализатора Цеокар-2 размером пор 3,8—4,0 нм наблюдался переход реакции во внутридиффузионную область при 47 "С с соответствующим снижением кажущейся энергии активации крекинга исходного снрья- 46.fr до [c.105]

    При эмульсионной полимеризации процесс может протекать либо в объеме одной фазы (полимер-мономерная частица), либо на границе раздела фаз сплошная фаза—полимер-мономерная частица. Могут возникать и промежуточные случаи, когда зона реакции занимает часть объема реакционной фазы (от узкой пограничной области до всего объема). Область протекания реакции зависит как от адсорбционной способности поверхностного слоя, так и от соотношения величин диффузионных потоков мономера и скорости химической реакции. [c.153]

    Кинетика цепной химической реакции, ее скорость и средняя длина цепи, естественно, находятся в прямой связи с условиями протекания реакции. Здесь мы ограничимся случаем, когда цепи зарождаются в объеме, но обрыв цепей происходит как в объеме, так и на поверхности. При этом будем считать, что объемный об]1ыв цепей следует линейному закону и что реакция протекает в диффузионной области. В этом случае для плоского реакционного сосуда (одномерная задача) при справедливом для диффузионной области равенстве нулю коицептрации активных центров у поверхности реакционного сосуда средняя длина цепи [c.209]

    Понятие переходная область было введено в свое время для некоторых химических реакций, на протекание которых определен-кы1у1 образом влияет диффузия [18]. В этом случае было показано, что экспериментально нахвденная величина энергии активации равна половине истинной. [c.108]

    Следует отметить, что в настоящее время многими исследователями ускоренно разрабатываются и так называемые квазн-жидкие мембраны, принцип действия которых основан на протекании обратимой химической реакции материала мембраны (для кислых газов это обычно щелочи, или соли щелочных металлов) с выделяемым (целевым) компонентом и облегченным переносом этого компонента (обычно в виде комплекса с поглотителем) через мембрану. Применение такого рода мембран, отличающихся сверхвысокой селективностью ( апример, для смеси СО2—СНд значение фактора разделения может достигать нескольких тысяч) может позволить улучшить эффективность проведения процессов мембранного газоразделения, расширить область их применения. Однако мембраны этого типа пока еще не вышли из стадии лабораторных разработок [51, 57—59]. [c.286]

    Однако непрерывное введение новой технологии опережает развитие теоретических знаний, на основе которых проектируются аппараты, предназначенные для проведения химических реакций. Эти аппараты характеризуются одновременным протеканием процессов физических (передача импульсов движения, тепла и массы) и химических, что заставляет прежде всего познавать законы изменения скорости реакции в зависимости от условий работы реактора. Математическое описание сложного процесса, происходящего в реакторе в промышленных условиях, получило развитие только после 1940 г. Несмотря на то, что эта область научных знаний является сравнительно новой, ныне все-таки существуют данные, которые позволяют производить расчет химических реакторов на теоретической основе. [c.11]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    Т. е. не зависит от эффективности захвата свободных радикалов стенкой сосуда. Область значений О, удовлетворяющих этому неравенству, есть диффузионная область протекания химической реакции. [c.295]

    Идентификация соединений и качественный анализ стабильных продуктов химических реакций. При исследовании механизма хими-ческо11 реакции очень важно знать, какие вещества и в каких соотношениях образовались в результате реакции это дает ценную информацию о возможных нутях протекания процесса, а также о промежуточных веществах. В этом отношении ИК-сиектроскопия дополняет другие методы исследования. Особенно большую ценность представляет метод ИК-спектроскопии для обнаружения и идентификации различных веществ. Так, многие вещества (предельные углеводороды, олефины с несопряженной двойной связью) не поглощают в видимой и УФ-областях спектра, но дают характерные ИК-сиектры. [c.211]

    Таким образом, с помощью формулы (6.51) и значений Ф , определяемых зависимостью (6.60), процесс хемосорбщ1и может бьггь рассчитан как в смешанной, так и в диффузионной областях протекания химической реакции. [c.271]

    Вопрос о соотношении скоростей массопередачи и химической реакции обычно рассматривают в связи с существующими представлениями об области протекания процесса. Понятие о кпнетичест ой, диффузионной и переходной областях протекания процесса было введено Франк-Каменецким [30] в 1947 г. В течение последующей четверти века эти представленпя переходили из одной монографии в другую и из одного учебника в другой. При этом в большинстве работ полностью игнорировался тот факт, что Франк-Каменецкий рассматривал конкретный случай реакции первого порядка в гетерогенно-каталитическом реакторе для системы газ — твердое тело [31]. Более того, даже применительно к этому случаю формулировки [c.14]

    Если скорость диффузии и скорость химической реакции, рассмотренные независимо друг от друга, соизмеримы, то имеется переходная область. Один и тот же процесс, в.зависимости от условий его проведения, может лежать в различных областях. Большое (влияние на характер протекания гетерогенного химического процесса оказывают давления реагирующих веществ,..хкоррстц.п охо,крв, пористость катализатора и темпера- [c.312]

    Большое влияние ка селективность оказывает температура, что ависит от разной энергии активации тех или иных стадий процес- а (энергия активации обычно более высока для побочных реакций). В результате каждый процесс имеет некоторую оптимальную температуру, определяемую достижением приемлемых скорости окисления и селективности. Повышение температуры может играть еще одну отрицательную роль, состоящую в переводе процесса в диффузионную или близкую к ней области протекания реакции процесс происходит в пограничной пленке, промежуточные продук-гы не успевают продиффупдировать в объем жидкости и переокис-ляются. Поэтому важную роль играет эффективная турбулизация реакционной смеси при барботированни газа-окислителя, способствующая переходу процесса в кинетическую область, развитию поверхности контакта фаз и интенсификации процесса. Следовательно, выбор условий окисления является сложной функцией многих химических и технологических факторов. [c.366]

    Для теоретического определения области протекания процесса необхо-димс оценивать скорости диффузии и химической реакции отдельно, как скорость независимых процессов. Отношение определенных таким образом скоростей указывают область протекания процесса в целом. Так следует поступать потому, что при установившемся течении реакции скорость диффузии становится равной скорости реакции, независимо от режима процесса, т. е. это равенство наблюдается в кинетической, диффузионной и переходной Областях. При стационарном протекании реакции термин диффузионная область вовсе не означает, следовательно, что действительная скорость реакции на реакционной поверхности больше скорости диффузии к этой поверхности. Обе эти скорости равны, но благодаря медленному притоку веществ к поверх 10сти скорость химической реакции на поверхности принудительно становится равной скорости диффузии. Концентрация вещества на поверхности прн этом мала, а градиент концентрации вблизи поверхности оказывается большим. И, наоборот, в кинетической области, где независимо определенная скорость диффузии значительно превышает скорости реакции, равенство скоростей диффузии и реакции наблюдается при мало отличающихся значениях концентраций реагирующих веществ в объеме и на поверхности. [c.313]

    Как показано в главе IX, конечной целью определения оптимальной температурной последовательности (ОТП) в реакторе является оптимальная селективность процесса в каждом сечении алпарата. Но на селективность сложной химической реакции, протекающей на пористом катализаторе, а также на производительность единицы объема катализатора можно оказать влияние, варьируя пористзгю структуру катализатора. В случае изменения пористой структуры катализатора при фиксированной температуре кинетика химической реакции будет переходить из одной кинетической области в другую, например, из внутрикинетической во внутридиффузионную или наоборот. Соответственно изменится и селективность сложной реакции. В общем случае для определения оптимальной области протекания реакции, с точки зрения селективности, необходимо решить внутридиффузионную задачу в виде системы уравнений [c.191]

    Чем определяется способность химической реакции к самопроизвольному протеканию Какие измеряемые или поддающиеся вычислению свойства систем Hj, I2 и НС1 указывают, что реакция между Hj и lj протекает самопроизвольно со взрывом при условиях, в которых разложение НС1 на Hj и I2 практически не поддается наблюдению В 1878 г. специалисты в области термодинамики француз Марселей Бертло и датчанин Юлиус Томсен дали на эти вопросы неверный ответ, сформулировав принцип Бертло и Томсена всякое химическое изменение, происходящее без участия внеишей энергии, приводит к образованию определенного вещества или системы веществ с максимально возможным выделением теплоты. Другими словами, по Томсену и Бертло, все самопроизвольные реакции должны быть экзотермичными. [c.66]

    Гетерогенные реакции сопровождаются транспортными явлениями внутри фаз и между ними. Это реакции в системах газ— жидкость, жидкость—жидкость, газ—твердое тело, жидкость— твердое тело, газ—жидкость—твердое тело (катализатор), причем они могут протекать в сплошной, дисперсной фазе или одновременно в обеих фазах. Совокупность факторов, которые необходимо учитывать при проектировании гетерогенных реакторов, весьма обширна и разнообразна в зависимости от фазового состояния реагентов и продуктов реакции, их аппаратурного оформления. Поскольку химическому превращению предшествует стадия транспортирования вещества из фазы в зону реакции и отвод продуктов реакции, скорость протекания собственно химического взаимодействия будет определяться соотношением скоростей химического превращения и массоиереноса, и в зависимости от превалирования одной из составляющих она будет протекать или в диффузионной, или в кинетической области. Отсюда следует важность обеспечения необходимых условий массоиереноса за счет гидродинамических факторов, т. е. состояния фаз, а также за счет аг-J)eгaтнoгo состояния реагентов (например, распределения частиц -ПО размерам в случае реакций с твердой фазой). [c.82]

    Целенаправленное совмещение ректификации и химической реакции особенно эффективно в тех случаях, когда реакция про-гекает с высокой скоростью и большим тепловым эффектом и их совместное протекание не противоречиво. В этом случае основная цель совмещения состоит в активном использовании тепла химической реакции непосредственно в одном аппарате без промежуточных преобразователей и, следовательно, с высокой эффективностью. В отличие от обычно применяемой рекуперации тепла реакции в случае совмещения должна уменьшиться инерционность объекта и соответственно возрасти область устойчивых режимов. Другой причиной совмещения может служить потребность в изменении топологии концентрационного симплекса составов при разделении азеотропных смесей. [c.92]

    При экстраполировании результатов за пределы экспериментально найденных значений необходимо четко представлять себе, что при других значениях переменных соотношение влияния различных тормозящих факторов на протекание процесса может измениться. Например, для частиц, образующих твердую необлетающую корку золы , повышение температуры и в меньшей степени увеличение их размеров приводит к тому, что диффузионное сопротивление становится фактором, лимитирующим скорость процесса, поскольку критическая температура перехода в диффузионную область является функцией размеров частиц, пористости материала и кинетики химической реакции. Для процессов, при которых на поверхности частицы не образуется слой золы , повышение температуры также сопровождается возрастанием относительного влияния сопротивления газовой пленки. [c.346]

    Решение уравнений для сопряженного тепло-массопереноса в сложной области, включающей элементы конструкции (стенки аппарата, датчики и т. д.), движущийся раствор, инкрустации и отложения, позволяет определить температуру 0 и концентрации реагентов С,. Источники qe учитывают тепло химических реакций и управляюпще воздействия. Протекание гомогенных реакций учитывается через источники (или стоки) q в уравнении (4). [c.39]


Смотреть страницы где упоминается термин Химическая реакция области протекания: [c.168]    [c.139]    [c.18]   
Гидродинамика, массо и теплообмен в колонных аппаратах (1988) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Область химической реакции

Примеры протекания химических реакций в диффузионной области



© 2025 chem21.info Реклама на сайте