Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы методы отделения

    Глава III Методы отделения торня от сопутствующих элементов Отделение тория от редкоземельных элементов. . .. Методы, использующие различие в основности тория и ред [c.295]

    Радиохимическое выделение актиния обычно состоит из двух стадий выделения актиния на носителях — солях редкоземельных элементов и отделения актиния от последних. Наибольшее количество примесей удаляется при соосаждении актиния с фторидом лантана. Этим способом отделяют актиний от его материнского вещества — протактиния. От тория актиний отделяют путем осаждения тория в виде тиосульфата или перекиси актиний при этом остается в растворе. От радия актиний отделяют осаждением аммиаком радий при этом также остается в растворе. Наилучшие результаты получаются при использовании для очистки актиния хроматографических и экстракционных методов. [c.495]


    Б. Отделение тория от редкоземельных элементов методом экстракции [c.326]

    Метод концентрирования редкоземельных элементов с отделением от прочих элементов [c.83]

    С использованием этого реагента разработан метод отделения плутония от урана, трансурановых элементов и продуктов деления, способ отделения циркония и тория от редкоземельных элементов, метод химико-снектрального определения 10 элементов после их групповой экстракции. Салицилальдоксим был использован для экстракционного выделения щелочноземельных элементов — продуктов деления. [c.413]

    Процесс выделения лантана из соответствующих руд рассматривается при описании переработки руд редкоземельных металлов. Там же указаны способы отделения лантана от сопутствующих ему в природе элементов. (Методы отделения лантана от актиния см. стр. 61.) [c.47]

    Осаждение щавелевой кислотой из слабокислого раствора отделяет торий от всех других членов группы аммиака (включая титан и цирконий), за исключением скандия и редкоземельных элементов. Для отделения тория от РЗЭ было предложено много методов нижеприведенные методы являются наиболее быстрыми и удобными. [c.198]

    Редкоземельные элементы обладают весьма близкими химическими свойствами и при отделении их от других элементов практически всегда выделяются в виде суммы соединений всех редкоземельных элементов (например, оксалатов или фторидов). Для разделения и выделения отдельных элементов этой группы используют различные химические и физико-химические методы. Для определения отдельных редкоземельных элементов в их смеси наряду с некоторыми физическими методами используют спектрофотометрические методы. [c.200]

    Глава II Методы отделения тория от сопутствующих элементов Отделение тория от редкоземельных элементов ... [c.295]

    Методы, использующие различную летучесть некоторых со единений тория и редкоземельных элементов. ... Отделение тория от скандия. ........... [c.295]

    Для повышения избирательности осаждения урана (VI) рекомендуется применение комплексона III [898, 900]. Добавление комплексона III в анализируемый раствор перед осаждением позволяет определять уран (VI) в присутствии тория и редкоземельных элементов, а также ванадия. Подробное описание соответствующих методик приводится в разделе Методы отделения . [c.69]


    Из предварительно восстановленных растворов уран (IV) количественно может быть отделен от умеренных количеств других элементов осаждением щавелевой кислотой. Исключением являются только торий и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с ураном (IV). Полноте осаждения урана (IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества (молочная кислота и т. п.). После отделения осадка содержание урана в нем определяют весовым или другим удобным методом. Методика осаждения подробно описана в разделе Весовые методы определения . [c.277]

    Вследствие того, что скорости образования акво- и хлороком-плексов в этанольных растворах НС1 много меньше, чем в соответствующих водных растворах, можно получить количественное разделение комплексов хроматографическим методом. Однако отделение Сг(1П) от многих элементов, за исключением Th(IV), Zr(IV), Ва(И) и некоторых редкоземельных элементов, затруднительно из-за того, что разные комплексы Сг(1И) элюируют в существенно различных условиях [1072]. Значения Kd увеличиваются с ростом длины углеродной цепи в молекулах спиртов, изомерия последних не оказывает влияния [499]. [c.136]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]

    Методы экстракции кальция и других щелочноземельных металлов из кислых растворов имеют большое значение для отделения кальция от больших количеств железа, никеля, хрома, редкоземельных элементов и др. Экстрагируют роданидные комплексы кальция трибутилфосфатом [131, 138, 320[. Равновесие в системе раствор кальция — роданид — ТБФ наступает за несколько секунд. Из раствора 0,liV по НС1 и 2 М по роданиду экстрагируется 98% Са. Для маскировки тяжелых металлов применяют комплексон III. При этом кальций практически количественно экстрагируется в виде роданидного комплекса (раствор 0,01 — 0,6 N по НС1 pH 2—0,2) [1371 (рис. 30). Такой метод позволяет [c.169]

    Экстракционные методы отделения Се (IV) от редкоземельных элементов [c.126]

    Методы отделения макрокомпонента выбираются с учетом его химических свойств. Так, при отделении Ре можно применять соосаждение рзэ с оксалатом Са [1699] или, лучше, экстракцию из солянокислой среды [1327]. Большие количества Сг, N1, Ре и Мп, например из образцов сталей [1327], удобно выделять при помощи электролиза на Нд-катоде. При анализе металлических образцов и и ТЬ и их соединений применяются хорошо разработанные экстракционные способы [915, 2054], хотя для отделения этих элементов от редкоземельных известны и ионообменные методики [900]. Наконец, извлечение рзэ с носителем из ВеО или 2г и его сплавов осуществляется на основе фторидного осаждения [1231, 2053]. Таким образом, при помощи сочетания химического концентрирования и очистки со спектральным анализом концентрата можно контролировать содержание рзэ в чистых веществах порядка 10 — 10- %. [c.206]

    Поэтому целесообразно перед облучением подвергнуть церий дополнительной очистке, обеспечивающей удаление примесей редкоземельных элементов. Лучше всего для очистки применить те же методы экстракции, которые использованы для отделения празеодима от церия. Рекомендуемая технологическая схема выделения празеодима с применением экстракции нитрометаном представлена на рис. 5. [c.86]

    Ионообменный метод отделения тория от редкоземельных элементов [1934]. [c.319]

Рис. 82. Хроматографическое разделение радиоизотопов редкоземельных элементов после отделения эрбия, облученного протонами с энергией 660 Мэе, методом распределительной хроматографии. Катионит дауэкс-50Х8 (12—15 меш) [188] Рис. 82. <a href="/info/39784">Хроматографическое разделение</a> радиоизотопов <a href="/info/2346">редкоземельных элементов</a> <a href="/info/1660286">после отделения</a> эрбия, <a href="/info/572253">облученного протонами</a> с энергией 660 Мэе, <a href="/info/1618449">методом распределительной хроматографии</a>. Катионит дауэкс-50Х8 (12—15 меш) [188]

    Отделение актиния от группы редкоземельных элементов, особенно от лантана, является одной из самых сложных задач аналитической химии. М. М. Зив, Б. И. Шестаков и И. А. Шестакова [135] предложили способ и осуществили разделение лантана и актиния методом распределительной хроматографии с обращенной фазой из 100%-го трибутилфосфата, с использованием в качестве элюирующих растворов смеси 10 М NH NOg+O,] М HNOg. В качестве носителя органической фазы использовался порошок фторопласта-4. В соответствии с коэффициентом распределения барий проходит через колонку без поглощения, затем вымывается актиний и последним выходит лантан. [c.176]

    Широкое распространение получил экстракционный метод отделения железа (ГП) в в iдe Н[РеС14] от многих других ионов, например от кальция, стронция, бария, алюминия, редкоземельных и многих других элементов. Тетрахлоридный комплекс железа экстрагируют этилацетатом или диэтиловым эфиром. [c.267]

    Осаждение Ри(1У) в виде иодата применяется для отделения от многих элементов, чо главным образом от редкоземельных элементов и и (VI) [368]. Этот метод широко попользуется в аналитической практике благодаря быстроте фильтрования осадка и легкости растворения его. При значительных (> 50 мг) количествах плутония для более полного отделения от примесей осаждение лучше вести из бМ HNOз, при меньших содержаниях плутония для количественного выделения кислотность лучше понижать до 0,5— М HNOз. Отделение от тория, циркония и титана не достигается. Четырехвалентные церий и уран также осаждаются иодатом, но если раствор предварительно обработать перекисью водорода, то оба эти элемента остаются в растворе, поскольку первый из них восстанавливается, а второй ркиоляется. Обработка перекисью также благоприятна и для плутония, так как переводит его в четырехвалентное состояние. Трехвалентные редкоземельные элементы вообще легко отделяются при иодатном осаждении, но если они присутствуют в значительных количествах, требуется повторное осаждение. [c.292]

    Отделение оксалата плутония (IV). Метод может быть использован для отделения плутония от тех же элементов, которые отделяются при оксалатном осаждении четырехвалентного урана [9, стр. 277]. Растворимость оксалата четырехвалентного плутония с увеличением кислотности (до 1,0 М HNO3) уменьшается [34, стр. 310]. Однако для более полного отделения Pu(IV) от других элементов осаждение лучше проводить. из 2 М раствора кислоты (растворимость Ри ( 204)2 при этой кислотности возрастает незначительно). Совместно с плутонием в этих условиях количественно осаждаются торий, U(IV) и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с Pu(IV). Осаждению Pu(IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества [9, стр. 277]. [c.298]

    Для устранения мешающего влияния ванадия и др. металлов В, И. Титов и И, И, Волков [157, 184], а также и другие исследователи [197, 748, 818, 820, 975] предложили проводить осаждение в присутствии комплексона П1, удерживающего в растворе основные мешающие элементы—Ре, А1, Сг, Си, N1, редкоземельные элементы и ряд других. Ванадий при кипячении раствора восстанавливается комплексоном П1 из пятивалентного до четырехвалентного, который затем также маскируется избытком комплексона III. Таким образом, осаждение урана фосфатами в присутствии комплексона III позволяет количественно определять уран в сложных по составу растворах, Однакоэтот метод нашел основное применение как способ отделения малых количеств урана от сопутствующих элементов для [c.61]

    Однако оказалось, что мешающее влияние многих элементов можно легко устранить применением комплексона И1, образующего с ними прочные растворимые комплексы и тем самым удерживающего их в растворе. Согласно исследованиям В. И. Титова и И. И. Волкова [157], применение комплексона III при осаждении фосфата уранила позволяет отде 1ять уран от многих элементов, в том числе таких, как Fe, AI, Сг, u, Ni, редкоземельные элементы, V, Мои др. Разработанный указанными авторами метод отделения урана под названием трилоно-фосфатного метода нашел применение при определении малых содержаний урана в бедных рудах и растворах сложного состава. [c.267]

    Метод Гехта, Коркиша и др. [671] отделения урана от Ре (III), Т11, РЬ, Са, Mg и редкоземельных элементов основан на том же принципе. [c.323]

    Долар и Драганич [470] в поисках селективного элюента для отделения урана от редкоземельных элементов исследовали растворы соляной, серной, щавелевой, лимонной, винной кислот, цитрата, оксалата и тартрата аммония. Наилучшие результаты были получены с щавелевой кислотой. 1Л раствор Н2С2О4 избирательно извлекает уран из колонки катионита Амберлит 1R-120. Европий элюируется затем 5 N НС1. Ошибка метода о% (отн.). [c.325]

    Чистые соединения редкоземельных элементов (1158). Чисты( соединения скандия (1158). Получение соединений лантана празеодима и неодима методом ионного обмена (1160). Чисты( соединения церия (1161). Отделение самария, европия и иттер бия в виде амальгам (1162). Особо чистые редкоземельные ме таллы (1163). Гидриды РЗЭ (1164), Хлориды, бромиды и иоди ды РЗЭ(1П) (1166). Дигалогениды РЗЭ (1172). Галогенид оксиды РЗЭ (1175). Бромид-тетраоксиды РЗЭ (1178). Оксщ празеодима(IV) (1178). Оксид тербия(1У) (1180). Оксид це рия(1П) (1180). Оксид европия(П, III) (1182). Оксид европия(И) (1183). Гидроксиды РЗЭ, кристаллические (1184) Гидроксид европия(П) (1186). Соли европия(П) (1186). Сульфиды и селениды редкоземельных элементов (1188). Теллурн-ды РЗЭ (1192). Сульфид-диоксиды РЗЭ (1193). Нитриды P3S (1195). Нитраты РЗЭ (1199). Фосфиды РЗЭ (1201), Фосфать [c.1498]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Отделение титана, ванадия и вольфрама проводят при pH 4,0. К элюату прибавляют 9,00 мг нитрата бериллия, 10 см 6%-ного раствора купферона и несколько капель метилового оранжевого. При нейтрализации раствора гидроксидом аммония осаждается купферонат бериллия, с которым соосаждаются гидроксиды лантаноидов, скандия и тория. Осадок купфероната озоляют и в золе определяют редкоземельные элементы спектрографическим методом. [c.205]

    В некот(М)ых случаях, как, например, в экстракционных разде-лшвях, в о(й>емных определениях или в колориметрии, особое внимание уделяется рассмотрению поведения четырехвалентного церия. Среди методов разделения более подробно рассмотрены два основных метода хроматографический и экстракционный. В основном первый Из них применяется для разделения смесей редкоземельных элементов и в этой части освещен более детально. Отдельные методы количественного определения весьма неравноценны так, объемные методы, основанные на реакциях окисления-восстановления, применяются в основном для определения церия, полярография — для определения европия и иттербия, а объемные методы с использованием комплексообразующих или осаждающих реагентов—для группового определения редкоземельных элементов. Наиболее универсальные оптические и активационный методы рассмотрены в гораздо большем объеме ввиду их особой роли в анализе смесей редкоземельных элементов. В главах по прикладным вопросам уделено значительное внимание анализу особо чистых веществ и отделению редкоземельных элементов от других элементов. [c.6]

    Пршибил и др. [3J7] разработали метод осаждения MgNH4P04- BHjO в присутствии катионов III и IV аналитических групп, а также урана, бериллия, титана, тория, редкоземельных элементов и ш елочноземельных металлов, связываемых комплексоном и тироном неосаждающиеся соединения. Вместо тирона другие авторы применяют лимонную кислоту [792]. Фосфор определяют по количеству магния, не вошедшего в реакцию или содержащегося в осадке магнийаммонийфосфата. Для отделения Fe + применяют купферон [668, 669] с последующей экстракцией образующихся комплексов эфиром. Затем в водном растворе определяют РО4 в присутствии молочной кислоты, прибавляя комп-лексон III и титруя его избыток сульфатом магния (в качестве индикатора при этом применяют эриохром черный Т или смесь его с тг-нитрозодиметиламином [119]) до перехода окраски из изумрудно-зеленой красную. Косвенный комнлексонометриче-ский метод с применением солей магния был изучен и усовершенствован многими авторами [119, 546, 661, 712, 805, 902, 1136, 1137]. Его применяют для определения фосфора в различных [c.38]

    Наилучпгам методом отделения церия от других редкоземельных элементов является экстракция его органическими раствора-теляин в четырехвалентном состоянии. Этот метод использован для получения свободного от носителя Рг из облученного церия. [c.77]


Смотреть страницы где упоминается термин Редкоземельные элементы методы отделения: [c.6]    [c.179]    [c.163]    [c.98]    [c.47]    [c.47]   
Колориметрические методы определения следов металлов (1964) -- [ c.668 , c.669 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте